» » Автомобильное зарядное устройство своими руками: простые схемы. Обзор схем зарядных устройств автомобильных аккумуляторов Тиристорное зарядное устройство для аккумулятора своими руками

Автомобильное зарядное устройство своими руками: простые схемы. Обзор схем зарядных устройств автомобильных аккумуляторов Тиристорное зарядное устройство для аккумулятора своими руками

Часто владельцам автомобилей приходится сталкиваться с таким явлением как невозможность запуска двигателя по причине разряда аккумулятора. Для решения проблемы потребуется воспользоваться зарядкой для АКБ, которая стоит немалых денег. Чтобы не тратиться на покупку нового зарядного устройства для автомобильного аккумулятора, можно смастерить его своими руками. Важно только отыскать трансформатор с необходимыми характеристиками. Для изготовления самодельного устройства не обязательно быть электриком, а весь процесс в целом займёт не больше нескольких часов.

Особенности функционирования аккумуляторов

Не все водители знают о том, что в автомобилях используются свинцово-кислотные аккумуляторы. Такие АКБ отличаются своей выносливостью, поэтому способны служить до 5 лет.

Для зарядки свинцовых АКБ используется ток, который равняется 10% от общей ёмкости аккумулятора. Это значит, что для зарядки аккумулятора, ёмкость которого составляет 55 А/ч, требуется зарядный ток в 5,5 А. Если подать очень большой ток, то это может привести к закипанию электролита, что, в свою очередь, приведёт к снижению срока службы устройства. Маленький ток зарядки не продлевает срок службы АКБ, однако он не способен негативно отражаться на целостности устройства.

Это интересно! При подаче тока 25 А происходит быстрая подзарядка аккумулятора, поэтому уже через 5-10 минут после подключения ЗУ с таким номиналом можно запускать двигатель. Такой большой ток выдают современные инверторные зарядные устройства, только он негативно сказывается на сроке службы аккумулятора.

При зарядке АКБ происходит протекание зарядного тока обратно рабочему. Напряжение для каждой банки не должно быть выше 2,7 В. В АКБ на 12 В установлено 6 банок, которые между собой не связаны. В зависимости от напряжения аккумулятора, отличается количество банок, а также необходимое напряжение для каждой банки. Если напряжение будет больше, то это приведёт к возникновению процесса разложения электролита и пластин, что способствует выходу из строя АКБ. Чтобы исключить возникновение процесса закипания электролита, напряжение ограничивают на 0,1 В.

Батарея считается разряженной, если при подключении вольтметра или мультиметра, приборы показывают напряжение 11,9-12,1 В. Такой аккумулятор следует немедленно подзарядить. Заряженный аккумулятор имеет напряжение на клеммах 12,5-12,7 В.

Пример напряжения на клеммах заряженного аккумулятора

Процесс заряда представляет собой восстановление израсходованной ёмкости. Зарядка аккумуляторов может выполняться двумя способами:

  1. Постоянный ток . При этом регулируется зарядный ток, значение которого составляет 10% от ёмкости устройства. Время заряда составляет 10 часов. Напряжение заряда при этом изменяется от 13,8 В до 12,8 В за всю длительность зарядки. Недостаток такого способа заключается в том, что необходимо контролировать процесс зарядки, и вовремя отключить зарядное устройство до закипания электролита. Такой способ является щадящим для АКБ и нейтрально влияет на их срок службы. Для воплощения такого способа используются трансформаторные зарядные аппараты.
  2. Постоянное напряжение . При этом на клеммы АКБ подаётся напряжение величиной 14,4 В, а ток изменяется от больших значений к меньшим автоматически. Причём это изменение тока зависит от такого параметра, как время. Чем дольше заряжается АКБ, тем ниже становится величина тока. Перезаряд АКБ получить не сможет, если только не забыть выключить аппарат и оставить его несколько суток. Преимущество такого способа в том, что уже через 5-7 часов аккумулятор зарядится на 90-95%. АКБ можно также оставлять без присмотра, поэтому такой способ пользуется популярностью. Однако мало кому из автовладельцев известно о том, что такой метод зарядки является «экстренным». При его использовании существенно снижается срок службы АКБ. Кроме того, чем чаще осуществлять зарядку таким способом, тем быстрее будет разряжаться устройство.

Теперь даже неопытный водитель может понять, что если нет необходимости торопиться с зарядкой АКБ, то лучше отдать предпочтение первому варианту (по току). При ускоренном восстановлении заряда снижается срок службы устройства, поэтому высока вероятность того, что уже в ближайшее время понадобится покупать новый аккумулятор. Исходя из вышесказанного, в материале будут рассматриваться варианты изготовления зарядных устройств по току и напряжению. Для изготовления можно использовать любые подручные устройства, о которых поговорим далее.

Требования к зарядке АКБ

Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:

  1. Обеспечение стабильного напряжения 14,4 В.
  2. Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
  3. Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
  4. Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.

Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть. Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного устройства произойдёт повышение тока заряда выше номинального. Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог - электролит закипает.

Варианты самодельных зарядных устройств для АКБ

Перед тем как приступать к разработке зарядного устройства для АКБ, важно понимать, что такой аппарат является самоделкой и может негативно влиять на срок службы аккумулятора. Однако иногда такие аппараты попросту необходимы, так как позволяют существенно сэкономить деньги на приобретении заводских устройств. Рассмотрим, из чего же можно изготовить зарядные аппараты своими руками для аккумуляторов и как это сделать.

Зарядка из лампочки и полупроводникового диода

Этот способ зарядки актуален при таких вариантах, когда нужно завести автомобиль на севшем аккумуляторе в домашних условиях. Для того чтобы это сделать, понадобятся составляющие элементы для сборки аппарата и источник переменного напряжения 220 В (розетка). Схема самодельного зарядного устройства для автомобильного аккумулятора содержит следующие элементы:

  1. Лампа накаливания. Обычная лампочка, которая ещё именуется в народе как «лампа Ильича». Мощность лампы влияет на скорость заряда аккумулятора поэтому чем больше этот показатель, тем быстрее можно будет завести мотор. Оптимальный вариант – это лампа мощностью 100-150 Вт.
  2. Полупроводниковый диод. Элемент электроники, главным предназначением которого является проведение тока только в одну сторону. Необходимость данного элемента в конструкции зарядки заключается в том, чтобы преобразовывать переменное напряжение в постоянное. Причём для таких целей понадобится мощный диод, который сможет выдержать большую нагрузку. Использовать можно диод, как отечественного производства, так и импортный. Чтобы не покупать такой диод, его можно найти в старых приёмниках или блоках питания.
  3. Штекер для подключения в розетку.
  4. Провода с клеммами (крокодилы) для подключения к АКБ.

Это важно! Перед сборкой такой схемы нужно понимать, что всегда имеется риск для жизни, поэтому следует быть предельно внимательными и осторожными.

Схема подключения зарядного устройства из лампочки и диода к АКБ

Включать штекер в розетку следует только после того, как вся схема будет собрана, а контакты заизолированы. Чтобы избежать возникновения тока короткого замыкания, в цепь включается автоматический выключатель на 10 А. При сборке схемы важно учесть полярность. Лампочка и полупроводниковый диод должны быть включены в цепь плюсовой клеммы аккумулятора. При использовании лампочки в 100 Вт, будет поступать зарядный ток величиной 0,17 А на АКБ. Для зарядки аккумулятора на 2 А понадобится заряжать его на протяжении 10 часов. Чем больше мощность лампы накаливания, тем выше значение зарядного тока.

Заряжать таким устройством полностью севший аккумулятор не имеет смысла, а вот подзарядить при отсутствии заводского ЗУ - вполне реально.

Зарядное устройство для АКБ из выпрямителя

Этот вариант также относится к категории простейших самодельных зарядных устройств. В основу такого ЗУ входят два основных элемента – преобразователь напряжения и выпрямитель. Существует три вида выпрямителей, которые заряжают устройство следующими способами:

  • постоянный ток;
  • переменный ток;
  • ассиметричный ток.

Выпрямители первого варианта заряжают аккумулятор исключительно постоянным током, который очищается от пульсаций переменного напряжения. Выпрямители переменного тока подают пульсирующее переменное напряжение на клеммы аккумулятора. Ассиметричные выпрямители имеют положительную составляющую, а в качестве основных элементов конструкции используются однополупериодные выпрямители. Такая схема имеет лучший результат по сравнению с выпрямителями постоянного и переменного тока. Именно его конструкция и будет рассмотрена далее.

Для того чтобы собрать качественное устройство для зарядки АКБ, понадобится выпрямитель и усилитель тока. Выпрямитель состоит из следующих элементов:

  • предохранитель;
  • мощный диод;
  • стабилитрон 1N754A или Д814А;
  • выключатель;
  • переменный резистор.

Электрическая схема ассиметричного выпрямителя

Для того чтобы собрать схему, понадобится использовать предохранитель, рассчитанный на максимальный ток в 1 А. Трансформатор можно взять от старого телевизора, мощность которого не должна превышать 150 Вт, а выходное напряжение составлять 21 В. В качестве резистора нужно взять мощный элемент марки МЛТ-2. Выпрямительный диод должен быть рассчитан на ток не менее 5 А поэтому оптимальный вариант – это модели типа Д305 или Д243. В основу усилителя входит регулятор на двух транзисторах серии КТ825 и 818. При монтаже транзисторы устанавливаются на радиаторы для улучшения охлаждения.

Сборка такой схемы выполняется навесным способом, то есть на очищенной от дорожек старой плате располагаются все элементы и подключаются между собой с помощью проводов. Её преимуществом является возможность регулировки выходного тока для зарядки АКБ. Недостатком схемы является необходимость найти необходимые элементы, а также правильно их расположить.

Простейшим аналогом представленной выше схемы является более упрощённый вариант, представленныё на фото ниже.

Упрощённая схема выпрямителя с трансформатором

Предлагается воспользоваться упрощённой схемой с применением трансформатора и выпрямителя. Кроме того, понадобится лампочка на 12 В и 40 Вт (автомобильная). Собрать схему не составит труда даже новичку, но при этом важно обратить внимание на то, что выпрямительный диод и лампочка должны быть расположены в цепи, которая подаётся на минусовую клемму АКБ. Недостатком такой схемы является получение пульсирующего тока. Чтобы сгладить пульсации, а также снизить сильные биения, рекомендуется воспользоваться схемой, которая представлена ниже.

Схема с диодным мостом и сглаживающим конденсатором уменьшает пульсации и снижает биение

Зарядное устройство из блока питания компьютера: пошаговая инструкция

В последнее время популярностью пользуется такой вариант автомобильной зарядки, который можно изготовить самостоятельно, воспользовавшись компьютерным блоком питания.

Первоначально понадобится рабочий блок питания. Для таких целей подойдёт даже блок, имеющий мощность 200 Вт. Он выдаёт напряжение 12 В. Его будет недостаточно, чтобы зарядить АКБ, поэтому немаловажно повысить это значение до 14,4 В. Пошаговая инструкция изготовления ЗУ для АКБ из блока питания от компьютера выглядит следующим образом:

  1. Первоначально выпаиваются все лишние провода, которые выходят из блока питания. Оставить нужно только зелёный провод. Его конец нужно припаять к минусовым контактам, откуда выходили чёрные провода. Делается эта манипуляция для того, чтобы при включении блока в сеть, сразу запускалось устройство.

    Конец зелёного провода необходимо припаять к минусовым контактам, где находились чёрные провода

  2. Провода, которые будут подключаться к клеммам аккумулятора, необходимо припаять к выходным контактам минуса и плюса блока питания. Плюс припаивается на место выхода жёлтых проводов, а минус на место выхода чёрных.
  3. На следующем этапе необходимо реконструировать режим работы широтно-имульсной модуляции (ШИМ). За это отвечает микроконтроллер TL494 или TA7500. Для реконструкции понадобится нижняя крайняя левая ножка микроконтроллера. Чтобы к ней добраться, необходимо перевернуть плату.

    За режим работы ШИМ отвечает микроконтроллер TL494

  4. С нижним выводом микроконтроллера соединены три резистора. Нас интересует резистор, который соединён с выводом блока 12 В. Он отмечен на фото ниже точкой. Этот элемент следует выпаять, после чего измерить значение сопротивления.

    Резистор, обозначенный фиолетовой точкой, необходимо выпаять

  5. Резистор имеет сопротивление около 40 кОм. Он подлежит замене на резистор с иным значением сопротивления. Чтобы уточнить величину необходимого сопротивления, требуется первоначально к контактам удалённого резистора припаять регулятор (переменный резистор).

    На место удалённого резистора припаивают регулятор

  6. Теперь следует устройство включить в сеть, предварительно подключив к выходным клеммам мультиметр. Изменяется выходное напряжение при помощи регулятора. Нужно получить значение напряжения в 14,4 В.

    Выходное напряжение регулируется переменным резистором

  7. Как только значение напряжения будет достигнуто, следует выпаять переменный резистор, после чего измерить полученное сопротивление. Для вышеописанного примера его значение составляет 120,8 кОм.

    Полученное сопротивление должно составлять 120,8 кОм

  8. Исходя из полученного значения сопротивления, следует подобрать аналогичный резистор, после чего запаять его на место старого. Если найти резистор такой величины сопротивления не удаётся, то можно подобрать его из двух элементов.

    Последовательная пайка резисторов суммирует их сопротивление

  9. После этого проверяется работоспособность устройства. По желанию к блоку питания можно установить вольтметр (можно и амперметр), что позволит контролировать напряжение и ток зарядки.

Общий вид зарядного устройства из блока питания компьютера

Это интересно! Собранное ЗУ имеет функцию защиты от тока короткого замыкания, а также от перегрузки, однако оно не защищает от переполюсовки, поэтому следует припаивать выводящие провода соответствующего цвета (красный и чёрный), чтобы не перепутать.

При подключении ЗУ к клеммам АКБ будет подаваться ток около 5-6 А, что является оптимальным значением для устройств ёмкостью 55-60А/ч. На видео ниже показано, как сделать ЗУ для АКБ из блока питания компьютера с регуляторами напряжения и тока.

Какие ещё имеются варианты ЗУ для АКБ

Рассмотрим ещё несколько вариантов самостоятельных зарядных устройств для аккумуляторов.

Использование зарядки от ноутбука для АКБ

Один из самых простых и быстрых способов оживления севшего аккумулятора. Для реализации схемы оживления АКБ с помощью зарядки от ноутбука понадобятся:

  1. Зарядное устройство от любого ноутбука. Параметры зарядных устройств составляют 19 В и ток около 5 А.
  2. Лампа галогеновая мощностью 90 Вт.
  3. Соединительные провода с зажимами.

Переходим к реализации схемы. Лампочка используется для того, чтобы ограничить ток до оптимального значения. Вместо лампочки можно использовать резистор.

Зарядку для ноутбука также возможно использовать для «оживления» автомобильного аккумулятора

Собрать такую схему не составляет большого труда. Если зарядку от ноутбука не планируется использовать по назначению, то штекер можно отрезать, после чего подключить к проводам зажимы. Предварительно при помощи мультиметра следует определить полярность. Лампочка включается в цепь, которая идёт на плюсовую клемму аккумулятора. Минусовая клемма от АКБ подключается напрямую. Только после подключения устройства к АКБ можно осуществлять подачу напряжения на блок питания.

ЗУ своими руками из микроволновой печи или аналогичных приборов

С помощью трансформаторного блока, который имеется внутри микроволновки, можно сделать ЗУ для АКБ.

Пошаговая инструкция изготовления самодельного зарядного устройства из трансформаторного блока от микроволновки представлена ниже.


Схема подключения трансформаторного блока, диодного моста и конденсатора к автомобильному аккумулятору

Сборку устройства можно осуществлять на любом основании. При этом важно, чтобы все конструкционные элементы были надёжно защищены. При необходимости схему можно дополнить выключателем, а также вольтметром.

Бестрансформаторное зарядное устройство

Если поиски трансформатора завели в тупик, то можно воспользоваться простейшей схемой без понижающих устройств. Ниже представлена такая схема, которая позволяет реализовать ЗУ для аккумулятора без использования трансформаторов напряжения.

Электрическая схема ЗУ без использования трансформатора напряжения

Роль трансформаторов выполняют конденсаторы, которые рассчитаны на напряжение величиной 250В. В схему следует включить минимум 4 конденсатора, расположив их параллельно. Параллельно конденсаторам в цепь включается резистор и светодиод. Роль резистора заключается в гашении остаточного напряжения после отключения устрйоства от сети.

В цепь также включается диодный мост, рассчитанный на работу с токами до 6А. В схему мост включается после конденсаторов, а к его выводам подключаются провода, идущие на АКБ для зарядки.

Как заряжать аккумулятор от самодельного устройства

Отдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:

  1. Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
  2. Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
  3. Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
  4. Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
  5. Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.

Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой: то есть, зарядным устройством.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов : блок питания, регулятор, индикатор.

Классика - резисторный зарядник

Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой . Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.
Ток заряда регулируется реостатом.

Важно! Никакие переменные резисторы, даже на керамическом сердечнике, не выдержат такой нагрузки.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.



Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы - видео

Гасящий конденсатор

Принцип работы изображен на схеме.



Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток . Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Если добавить еще один элемент – автоматический контроль заряда , а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.



Схема контроля заряда и автоматического отключения , в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме . Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.



В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная , легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.



Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется , но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.



В качестве донора может выступить блок питания от системника ПК.

Важно! При использовании блока питания АТ или АТХ, возникает желание переделать готовую схему в зарядное устройство. Для реализации такой затеи необходима заводская схема блока питания.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

где I - средний зарядный ток, А., а Q - паспортная электрическая емкость аккумуляторной батареи, А-ч.

Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность , что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.


В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.


Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 - Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.


Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:


В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.


В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 - VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:


Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Тиристорный регулятор в зарядном устройстве.
Для более полного ознакомления с последуущим материалом, просмотрите предыдущие статьи: и.

♣ В этих статьях говориться о том, что существуют 2–х полупериодные схемы выпрямления с двумя вторичными обмотками, каждая из которых рассчитана на полное выходное напряжение . Обмотки работают поочередно: одна на положительной полуволне, другая на отрицательной.
Используются два полупроводниковых выпрямительных диода.

Предпочтительность такой схемы:

  • - токовая нагрузка на каждую обмотку и каждый диод в два раза меньше, чем на схему с одной обмоткой;
  • - сечение провода двух вторичных обмоток может быть в два раза меньше;
  • - выпрямительные диоды могут быть выбраны на меньший максимально допустимый ток;
  • - провода обмоток наиболее охватывают магнитопровод, магнитное поле рассеяния минимально;
  • - полная симметричность - идентичность вторичных обмоток;

♣ Используем такую схему выпрямления на П – образном сердечнике для изготовления регулируемого зарядного устройства на тиристорах.
Двух - каркасная конструкция трансформатора позволяет это сделать наилучшим образом.
К тому же две полу-обмотки получаются совершенно одинаковыми.

♣ И так, наше задание : построить устройство для зарядки аккумулятора с напряжением 6 – 12 вольт и плавным регулированием зарядного тока от 0 до 5 ампер .
Мною уже предлагался для изготовления, но регулировка зарядного тока в нем проводится ступенчато.
Посмотрите в этой статье, как выполнялся расчет трансформатора на Ш – образном сердечнике. Эти расчетные данные подходят и под П –образный трансформатор той же мощности.

Расчетные данные из статьи таковы:

  • - мощность трансформатора – 100 ватт ;
  • - сечение сердечника – 12 см.кв. ;
  • - выпрямленное напряжение - 18 вольт ;
  • - ток - до 5 ампер ;
  • - количество витков на 1 вольт – 4,2 .

Первичная обмотка:

  • - количество витков – 924 ;
  • - ток – 0,45 ампера;
  • - диаметр провода – 0,54 мм.

Вторичная обмотка:

  • - количество витков – 72 ;
  • - ток – 5 ампер;
  • - диаметр провода – 1,8 мм.

♣ Эти расчетные данные примем за основу построения трансформатора на П – образном сердечнике.
С учетом рекомендаций выше указанных статей по изготовлению трансформатора на П - образном сердечнике, построим выпрямитель для зарядки аккумулятора с плавной регулировкой зарядного тока .

Схема выпрямителя изображена на рисунке. Она состоит из трансформатора ТР , тиристоров Т1 и Т2 , схемы управления зарядным током, амперметра на 5 - 8 ампер, диодного моста Д4 - Д7 .
Тиристоры Т1 и Т2 одновременно выполняют роль выпрямительных диодов и роль регуляторов величины зарядного тока.


♣ Трансформатор Тр состоит из магнитопровода и двух каркасов с обмотками.
Магнитопровод может быть набран как из стальных П – образных пластин, так и из разрезанного О – образного сердечника из навитой стальной ленты.
Первичная обмотка (сетевая на 220 вольт - 924 витка) делится пополам – 462 витка (а – а1) на одном каркасе, 462 витка (б – б1) на другом каркасе.
Вторичная обмотка (на 17 вольт) состоит из двух полуобмоток (по 72 витка) мотается на первом (А - Б) и на втором (А1 – Б1) каркасе по 72 витка . Всего 144 витка.


Третья обмотка (с - с1 = 36 витков) +(d - d1 = 36 витков) в сумме 8,5 В +8,5 В = 17 вольт служит для питания схемы управления и состоит из 72 витков провода. На одном каркасе (с – с1) 36 витков и на другом каркасе (d - d1) 36 витков.
Первичная обмотка мотается проводом диаметром – 0,54 мм .
Каждая вторичная полуобмотка мотается проводом диаметром 1,3 мм. , рассчитанным на ток 2,5 ампера.
Третья обмотка мотается проводом диаметром 0,1 - 0,3 мм , какой попадется, ток потребления здесь маленький.

♣ Плавная регулировка зарядного тока выпрямителя основана на свойстве тиристора переходить в открытое состояние по импульсу, поступающему на управляющий электрод. Регулируя время прихода управляющего импульса, можно управлять средней мощностью проходящей через тиристор за каждый период переменного электрического тока.

♣ Приведенная схема управления тиристорами работает по принципу фазо-импульсного метода .
Схема управления состоит из аналога тиристора, собранного на транзисторах Тр1 и Тр2 , временной цепочки, состоящей из конденсатора С и резисторов R2 и Ry , стабилитрона Д7 и разделительных диодов Д1 и Д2 . Регулировка зарядного тока производится переменным резистором Ry .

Переменное напряжение 17 вольт снимается с третьей обмотки, выпрямляется диодным мостом Д3 – Д6 и имеет форму (точка №1) (в кружке №1). Это, пульсирующее напряжение положительной полярности с частотой 100 герц , меняющее свою величину от 0 до 17 вольт . Через резистор R5 напряжение поступает на стабилитрон Д7 (Д814А, Д814Б или любой другой на 8 – 12 вольт ). На стабилитроне напряжение ограничивается до 10 вольт и имеет форму (точка №2 ). Далее следует зарядно – разрядная цепочка (Ry, R2, C) . При возрастании напряжения от 0 начинает заряжаться конденсатор С, через резисторы Ry, и R2 .
♣ Сопротивление резисторов и емкость конденсатора (Ry, R2, C) подобраны таким образом, чтобы конденсатор зарядился за время действия одного полупериода пульсирующего напряжения. Когда напряжение на конденсаторе достигнет максимальной величины (точка №3) , с резисторов R3 и R4 на управляющий электрод аналога тиристора (транзисторы Тр1 и Тр2 ) поступит напряжение для открытия. Аналог тиристора откроется и заряд электричества, накопленный в конденсаторе, выделится на резисторе R1 . Форма импульса на резисторе R1 показана в кружке №4 .
Через разделительные диоды Д1 и Д2 импульс запуска подается одновременно на оба управляющих электрода тиристоров Т1 и Т2 . Открывается тот тиристор, на который в данный момент поступила положительная полуволна переменного напряжения с вторичных обмоток выпрямителя (точка №5) .
Изменяя сопротивление резистора Ry , изменяем время за которое полностью зарядится конденсатор С , то есть изменяем время включения тиристоров во время действия полуволны напряжения. В точке №6 показана форма напряжения на выходе выпрямителя.
Изменяется сопротивление Ry, изменяется время начала открывания тиристоров, изменяется форма заполнения полупериода действующим током (фигура №6). Заполнение полупериода может регулироваться от 0 до максимума. Весь процесс регулирования напряжения во времени показан на рисунке.
♣ Все показанные замеры формы напряжения в точках №1 - №6 проведены относительно плюсового вывода выпрямителя.

Детали выпрямителя:
- тиристоры Т1 и Т2 – КУ 202И-Н на 10 ампер . Каждый тиристор устанавливать на радиатор площадью 35 – 40 см.кв. ;
- диоды Д1 – Д6 Д226 или любые на ток 0,3 ампера и напряжение выше 50 вольт ;
- стабилитрон Д7 - Д814А - Д814Г или любой другой на 8 – 12 вольт ;
- транзисторы Тр1 и Тр2 любые маломощные на напряжение свыше 50 вольт .
Подбирать пару транзисторов необходимо с одинаковой мощностью, разными проводимостями и с равными коэффициентами усиления (не менее 35 - 50 ).
Мною опробованы разные пары транзисторов: КТ814 – КТ815, КТ816 – КТ817; МП26 – КТ308, МП113 – МП114 .
Все варианты работали хорошо.
- Сонденсатор емкостью 0,15 микрофарады ;
- Резистор R5 ставить мощностью в 1 ватт . Остальные резисторы мощностью 0,5 ватта .
- Амперметр рассчитан на ток 5 – 8 ампер

♣ Необходимо с вниманием отнестись к монтажу трансформатора. Советую перечитать статью. Особенно то место, где приводятся рекомендации по фазировке включения первичной и вторичной обмоток.

Можно использовать схему фазировки первичной обмотки приведенную ниже, как на рисунке.



♣ В цепь первичной обмотки последовательно включается электрическая лампочка на напряжение 220 вольт и мощность 60 ватт . эта лампочка будет служить вместо предохранителя.
Если обмотки будут сфазированы неправильно , лампочка загорится .
Если соединения проведены правильно , при включении трансформатора в сеть 220 вольт лампочка должна вспыхнуть и потухнуть.
На клеммах вторичных обмоток должно быть два напряжения по 17 вольт , вместе (между А и Б) 34 вольта .
Все монтажные работы необходимо проводить с соблюдением ПРАВИЛ ТЕХНИКИ ЭЛЕКТРОБЕЗОПАСНОСТИ!

Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Зарядное устройство позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы. Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от - 35 °С до + 35°С.

Схема устройства показана на рис. 2.60.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный moctVDI + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.


Зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 - К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б -- КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж - KT50IK, а КТ315Л - на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 - СП-1, СПЗ-30а или СПО-1.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
- доступность радиодеталей;
- плавная регулировка зарядного тока от 1 до 10 ампер;
- желательно чтобы это была схема зарядно-тренировочного устройства;
- не сложная наладка;
- стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор - ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
- колебания напряжения питания приводят к колебанию зарядного тока;
- нет защиты от короткого замыкания кроме предохранителя;
- устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 - 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог - таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 - на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их "ассимметричным" током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.


Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22...25 В.
Измерительный прибор РА1 подойдет со шкалой 0...5 А (0...3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000...18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.


Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 - ППБЕ-15, R3 - С5-16MB, R4 - ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе - прочтите эту статью:

Знаю что достал уже всякими разными зарядными, но я не мог не повторить улучшенную копию тиристорной зарядки для автомобильных аккумуляторов. Доработка этой схемы дает возможность больше не следить за состоянием заряженности АКБ, так же обеспечивает защиту от переполюсовки, а так же сохраняет старые параметры

Слева в розовой рамке представлена уже давно известная схема фазоимпульсного регулятора тока, подробней о преимуществах этой схемы можно почитать

В правой части схемы представлен ограничитель напряжения автомобильного аккумулятора. Смысл этой доработки заключается в том, что бы при достижении на аккумуляторе напряжения 14,4В, напряжение с этой части схемы блокировала подачу импульсов на левую часть схемы через транзистор Q3 и зарядка завершается.

Схему я выложил такой как нашел, лиж на печатной плате изменил немного номиналы делителя с подстроечником

Вот такая печатная плата у меня получилась в проекте SprintLayout

На плате изменился делитель с подстроечником, как выше говорил, а так же добавил еще один резистор для переключения напряжений между 14,4В-15,2В. Это напряжение 15,2В необходим для зарядки кальциевых автомобильных аккумуляторов

На плате три светодиодных индикатора: Питание, АКБ подключен, Переполюсовка. Первые два рекомендую поставить зеленые, третий светодиод красный. Переменный резистор регулятора тока устанавливается на печатную плату, тиристор и диодный мост вынес на радиатор.

Выложу пару фоток собранных плат, но пока не в корпусе. Так же пока нет испытаний зарядного устройства для автомобильных аккумуляторов. Остальные фото выложу как буду в гараже


Так же начал рисовать лицевую панель в этом же приложении, но пока жду посылку с Китая, панелью еще не начинал заниматься

Так же нашел в интернете таблицу напряжений аккумулятора при разных степенях заряженности, возможно кому то пригодится

Интересна будет статья про другое простое зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Автовладельцы часто сталкиваются с проблемой разряда аккумулятора . Если это происходит далеко от СТО, автомагазинов и АЗС, можно из доступных деталей самостоятельно изготовить устройство для заряда аккумуляторной батареи. Рассмотрим, как сделать зарядное устройство для автомобильного аккумулятора своими руками, обладая минимальными знаниями электромонтажных работ.

Такое устройство лучше применять только в критических ситуациях. Однако, если вы знакомы с электротехникой, правилами электро- и пожаробезопасности, имеете навыки электроизмерений и монтажных работ, самодельное зарядное устройство вполне может заменить заводской блок.

Причины и признаки разряда АКБ

В процессе эксплуатации аккумуляторной батареи при работе двигателя идет постоянный подзаряд АКБ от генератора автомобиля. Проверить процесс заряда можно, подключив к клеммам аккумулятора мультиметр при заведенном двигателе, измеряя напряжение зарядки автомобильного аккумулятора. Заряд считается нормальным, если напряжение на клеммах составляет от 13,5 до 14,5 Вольт.

Для полного заряда требуется проехать на авто не менее 30 километров или примерно полчаса в городском ритме движения.

Напряжение нормально заряженного аккумулятора во время стоянки должно быть не менее 12,5 Вольта. В том случае, если напряжение менее 11,5 Вольта , двигатель авто может не запуститься во время старта. Причины разряда аккумуляторной батареи:

  • АКБ имеет значительный износ (более 5-ти лет эксплуатации );
  • неправильная эксплуатация аккумулятора, приводящая к сульфатации пластин;
  • длительная стоянка транспортного средства, особенно в холодное время года;
  • городской ритм движения авто с частыми остановками, когда АКБ не успевает достаточно зарядиться;
  • невыключенные электроприборы автомобиля во время стоянки;
  • повреждение электропроводки и оборудования автомобиля;
  • утечки по электроцепям.

Многие автовладельцы в комплекте бортового инструмента не имеют средств для измерения напряжения АКБ (вольтметр, мультиметр, пробник, сканер ). В таком случае можно руководствоваться косвенными признаками разряда АКБ:

  • тусклое свечение лампочек на приборной панели при включении зажигания;
  • отсутствие вращения стартера при запуске двигателя;
  • громкие щелчки в районе стартера, погасание лампочек на приборной панели при запуске;
  • полное отсутствие реакции авто на включение зажигания.

При появлении перечисленных признаков в первую очередь необходимо проверить клеммы АКБ, при необходимости их почистить и поджать. В холодное время года можно попробовать занести на некоторое время аккумуляторную батарею в теплое помещение и его прогреть.

Можно попробовать «прикурить» авто от другого автомобиля. Если эти методы не помогают или невозможны, приходится воспользоваться зарядным устройством.

Универсальное зарядное устройство своими руками. Видео:

Принцип действия

Большинство устройств заряжают АКБ постоянными или импульсными токами. Сколько ампер нужно для зарядки автомобильного аккумулятора? Ток заряда выбирают равным одной десятой от емкости аккумуляторной батареи. При емкости 100 А*ч ток зарядки автомобильного аккумулятора будет 10 Ампер. АКБ придется заряжать около 10 часов до полного заряда.

Зарядка аккумулятора авто большими токами может привести к процессу сульфатации. Чтобы этого избежать, лучше производить заряд АКБ малыми токами, но более продолжительное время.

Импульсные устройства значительно уменьшают эффект сульфатации. Некоторые импульсные зарядные устройства имеют режим десульфатации, который позволяет восстанавливать работоспособность АКБ. Он заключается в последовательном заряде-разряде импульсными токами по специальному алгоритму.

Заряжая аккумуляторную батарею, нельзя допустить перезаряд. Он может привести к закипанию электролита, сульфатации пластин. Необходимо, чтобы устройство имело собственную систему контроля, измерения параметров и аварийного отключения.

Начиная с 2000-х на автомобили стали устанавливать специальные типы аккумуляторных батарей: AGM и гелевые. Зарядка автомобильного аккумулятора таких типов отличается от обычного режима.

Как правило, он трехэтапный. До определенного уровня заряд идет большим током. Затем ток уменьшается. Окончательный заряд происходит еще меньшими импульсными токами.

Зарядка автомобильного аккумулятора в домашних условиях

Часто в водительской практике возникает ситуация, когда, поставив машину возле дома вечером, утром обнаруживается, что АКБ разряжен. Что можно сделать в такой ситуации, когда под рукой нет паяльника, никаких деталей, а завестись надо?

Обычно на аккумуляторе осталась небольшая емкость, его просто необходимо немного «подтянуть», чтобы заряда хватило для запуска двигателя. В этом случае может помочь блок питания от какой-нибудь бытовой или оргтехники, например, ноутбука.

Зарядка от блока питания ноутбука

Напряжение, которое производит блок питания ноутбука обычно 19 Вольт, ток до 10 Ампер. Этого хватает, чтобы зарядить АКБ. Но напрямую подключать блок питания к аккумулятору НЕЛЬЗЯ. Необходимо последовательно в цепь заряда включить ограничивающее сопротивление. В качестве него можно взять автомобильную электролампочку, лучше для освещения салона. Ее можно приобрести на ближайшей автозаправке.

Обычно средний контакт разъема положительный. К нему подключается лампочка. Ко второму выводу лампочки подключается + АКБ.

Отрицательная клемма подключается к отрицательному выводу блока питания. На блоке питания обычно имеется шильдочка, показывающая полярность разъема. Пары часов зарядки таким методом достаточно, чтобы запустить двигатель.

Схема простого зарядного устройства для автомобильного аккумулятора.

Заряд от бытовой сети

Более экстремальный метод зарядки – непосредственно от бытовой сети. Его применяют только в критической ситуации, используя максимальные меры электробезопасности. Для этого понадобится осветительная лампа (не энергосберегающая ).

Можно вместо нее использовать электроплитку. Также необходимо приобрести выпрямительный диод. Такой диод можно «позаимствовать» из неисправной энергосберегающей лампы. На это время напряжение, подаваемое в квартиру, лучше обесточить. Схема представлена на рисунке.

Ток заряда при мощности лампы 100 Ватт будет приблизительно 0,5 А. За ночь АКБ подзарядится всего на несколько ампер-часов, но этого может хватить для запуска. Если соединить параллельно три лампы, то АКБ зарядится в три раза больше. Если вместо лампочки подключить электроплитку (на самой маленькой мощности ), то время заряда существенно уменьшится, но это очень опасно. К тому же может пробиться диод, тогда возможно замыкание АКБ. Методы заряда от 220 В опасны.

Зарядка для автомобильных аккумуляторов своими руками. Видео:

Самодельное зарядное устройство для автомобильного аккумулятора

Перед тем как сделать зарядное устройство для автомобильного аккумулятора, следует оценить свой опыт электромонтажных работ, знания по электротехнике, на основании этого приступить к выбору схемы зарядного устройства для автомобильного аккумулятора.

Можно посмотреть в гараже, возможно, есть старые устройства или блоки. Для устройства подходит блок питания от старого компьютера. В нем есть почти все:

  • разъем 220 В;
  • выключатель питания;
  • электросхема;
  • вентилятор охлаждения;
  • выводы подключения.

Напряжения на нем стандартные: +5 В, -12 В и +12 Вольт. Для заряда АКБ лучше использовать провод +12 Вольт, 2 Ампера. Выходное напряжение необходимо поднять до уровня +14,5 – +15,0 Вольт. Обычно это удается сделать, изменив номинал сопротивления в цепи обратной связи (около 1 килоОма ).

Ограничивающее сопротивление можно не ставить, электронная схема самостоятельно отрегулирует ток заряда в пределах 2 Ампер. Нетрудно подсчитать, что для полного заряда АКБ 50 А*ч потребуется около суток. Внешний вид устройства.

Можно подобрать или купить на блошином рынке сетевой трансформатор с напряжением вторичной обмотки от 15 до 30 Вольт . Такие применялись в старых телевизорах.

Трансформаторные устройства

Простейшая схема устройства с трансформатором.

Ее недостатком является необходимость ограничения тока в выходной цепи и связанные с этим большие потери мощности и нагревание резисторов. Поэтому для регулировки тока используют конденсаторы.

Теоретически, рассчитав номинал конденсатора, можно не использовать силовой трансформатор, как показано на схеме.

При покупке конденсаторов следует выбирать соответствующий номинал с напряжением 400 В и более.

В практике большее применение получили устройства с регулированием тока.

Можно выбрать схемы импульсных самодельных зарядных устройств для автомобильного аккумулятора. Они более сложны схемотехнически, требуют определенных навыков при монтаже. Поэтому, если вы не обладаете специальными навыками, лучше купить заводской блок.

Импульсные зарядные устройства

Импульсные зарядные устройства имеют ряд преимуществ:

Принцип действия импульсных устройств основан на преобразовании переменного напряжения бытовой электросети в постоянное при помощи диодной сборки VD8. Затем постоянное напряжение преобразуется в импульсы высокой частоты и амплитуды. Импульсный трансформатор Т1 вновь преобразует сигнал в постоянное напряжение, которое заряжает аккумулятор.

Так как обратное преобразование ведется на высокой частоте, то габариты трансформатора значительно меньше. Обратная связь, необходимая для контроля параметров заряда, обеспечивается оптроном U1.

Несмотря на кажущуюся сложность устройства, при правильной сборке блок начинает работать без дополнительной регулировки. Такое устройство обеспечивает ток заряда до 10 Ампер.

При заряде АКБ с помощью самодельного устройства необходимо:

  • устройство и АКБ располагать на токонепроводящей поверхности;
  • соблюдать требования электробезопасности (применять перчатки, резиновый коврик, инструмент с электроизоляционным покрытием );
  • не оставлять надолго включенное зарядное устройство без контроля, следить за напряжением и температурой АКБ, зарядным током.