» » Регулируем яркость шим-регулятором. Микросхемы-драйверы светодиодов Особенности работы схемы, реализующей ИП

Регулируем яркость шим-регулятором. Микросхемы-драйверы светодиодов Особенности работы схемы, реализующей ИП

Для управления 12 В светодиодными лентами вспомогательного освещения. Сначала думал, что найти подобное устройство легко в наше время, но это оказалось сложнее. Все, что попадалось в магазинах, либо не отвечают моим требованиям, либо очень дорого. Поэтому решил построить собственный, специально для моих потребностей.

Требования к регулятору

  • Мощность 100 Вт на 12 вольт
  • Плавное управление ручкой
  • Доступные радиокомпоненты
  • Отсутствие акустического шума
  • Малый шаг изменения мощности
  • Контроль до очень низких уровней яркости

Мои светодиодные ленты потребляют 20 Ватт на метр и там максимум 5 метров светодиодной ленты на диммер, поэтому нужна мощность около 100 Вт. Максимальный ток получился около 8.3 ампера.

Естественно, суммарная рассеиваемая мощность в диммере должна быть ниже, скажем, 1 ватта. Поэтому если мы используем один FET, нам нужно значение Rds - 14.5 мОм. А если надо - всегда можем параллельно впаять два или более, при необходимости снизить сопротивление канала.

Управление яркостью простым переменным резистором - это самый простой способ управления диммером, но такие устройства в продаже трудно найти. Большинство имеющихся в магазинах диммеров оснащены ИК-пультами дистанционного управления. На мой взгляд не нужное усложнение.

Всего нужны 3 комплекта, так что стоимость была тоже важным фактором. Все приличные диммеры я мог найти по цене $50 и выше. А тут можно уложится в данную цену за все.

Большинство из дистанционно управляемых регуляторов имеют только 8 уровней яркости. И все, что я нашел, работает линейно, что делает схемы лишёнными смысла. Люди воспринимают яркость логарифмически, а не линейно. Так что переход от 1% до 2% выглядит так же, как от 50% до 100%.

Линейный контроль не даст вам точной регулировки на нижнем пределе. В идеале, надо иметь экспоненциальную передаточную функцию от регулятора по скважности ШИМ для компенсации логарифмической природы человеческого видения. И самый простой способ сделать это - с помощью микроконтроллера.

Схема регулятора LED

В основе этой конструкции - 8-битный микроконтроллер PIC16F1936. Ничего особенного в этой конкретной модели нету, просто я использовал их несколько раз прежде и все еще имели некоторый запас.

А LM2931 обеспечивает стабильное 5 вольт от 12 вольт входного напряжения. Я использую LM2931 как стандартный стабилизатор на 5 В. Он совместим с легендарным регулятором 7805, но выживает при входных напряжениях в диапазоне от -50 до +60 вольт, что делает его очень надежным в плане возможных переходных процессов.

МК управляет LM5111 - двойной FET драйвер, который обеспечивает мощный 12В выход через пару IPB136N08N3 - N-канальные транзисторы. Он недорогой, SMD типа и отличное Rds - 11.5 мОм.

Вывод

Итого: если вам необходим LED диммер к лентам, есть паяльник и немного свободного времени - имеет смысл построить свой собственный прибор. Это не слишком сложно. А к схеме прилагается файл со всеми нужными eagle файлами, макетами, схемой, а также программным обеспечением.

В данной статье описано как собрать простой, но эффективный регулятор яркости светодиодов основанный на ШИМ регулировании яркости () свечения светодиодов.

Светодиоды (светоизлучающие диоды) очень чувствительные компоненты. При превышение питающего тока или напряжения выше допустимого значения может привести к выходу их из строя или же значительно сократить срок службы.

Обычно ток ограничивается с помощью резистора последовательно подключенного к светодиоду, или же регулятором тока цепи (). Увеличение тока на светодиоде увеличивает его интенсивность свечения, а снижение тока уменьшает его. Один из способов регулирования яркости свечения является использование переменного резистора () для динамического изменения яркости.

Но это только применимо к единичному светодиоду, поскольку даже в одной партии могут быть диоды с разной силой свечения и это повлияет на неравномерность свечения группы светодиодов.

Широтно-импульсная модуляция. Намного эффективнее метод регулирования яркости свечения путем применение (ШИМ). С ШИМ, группы светодиодов обеспечиваются рекомендуемым током, и в тоже время появляется возможность производить регулирование яркости за счет подачи питания с высокой частотой. Изменение периода вызывает изменение яркости.

Рабочий цикл можно представить как соотношение времени включения и выключения питания поступающего на светодиод. Допустим, если рассмотреть цикл в одну секунду и при этом в выключенном состоянии светодиод будет 0,1 сек., а во включенном 0,9 сек., то получается что свечение составит около 90% от номинального значения.

Описание шим регулятора яркости

Самый простой способ для достижения данного высокочастотного переключения – применение микросхемы , одой из самых распространенных и самых универсальных микросхем, когда-либо созданных. Схема ШИМ регулятора, показанная ниже предназначен для использования в качестве диммера для питания светодиодов (12 вольт) или регулятора скорости вращения для двигателя постоянного тока на 12 В.

В данной схеме, сопротивление резисторов к светодиодам необходимо подобрать, чтобы обеспечить прямой ток в 25 мА. В результате общий ток трех линеек светодиодов составит 75мА. Транзистор должен быть рассчитан на ток не менее 75 мА, но лучше взять с запасом.

Эта схема диммера осуществляет регулировку от 5% до 95%, но используя германиевые диоды вместо , диапазон может быть расширен от 1% до 99% от номинального значения.

Простейшая схема регулятора яркости светодиодов, представленная в этой статье, с успехом может быть применена в тюнинге автомобилей, ну и просто для повышения комфорта в машине в ночное время, например для освещения панели приборов, бардачков и так далее. Чтобы собрать это изделие, не нужно технических знаний, достаточно быть просто внимательным и аккуратным.
Напряжение 12 вольт считается полностью безопасным для людей. Если в работе использовать светодиодную ленту, то можно считать, что и от пожара вы не пострадаете, так как лента практически не греется и не может загореться от перегрева. Но аккуратность в работе нужна, что бы ни допустить короткого замыкания в смонтированном устройстве и как следствие пожара, а значит сохранить своё имущество.
Транзистор Т1, в зависимости от марки, может регулировать яркость светодиодов общей мощностью до 100 ватт, при условии, что он будет установлен на радиатор охлаждения соответствующей площади.
Работу транзистора Т1 можно сравнить с работой обыкновенного краника для воды, а потенциометра R1 – с его рукояткой. Чем больше откручиваешь – тем больше течёт воды. Так и здесь. Чем больше откручиваешь потенциометр – тем больше течёт ток. Закручиваешь – меньше течёт и меньше светят светодиоды.

Схема регулятора

Для этой схемы нам понадобятся не многочисленные детали.
Транзистор Т1. Можно применить КТ819 с любой буквой. КТ729. 2N5490. 2N6129. 2N6288. 2SD1761. BD293. BD663. BD705. BD709. BD953. Эти транзисторы нужно выбирать в зависимости от того, какую мощность светодиодов вы планируете регулировать. В зависимости от мощности транзистора находится и его цена.
Потенциометр R1 может быть любого типа сопротивлением от трёх до двадцати килом. Потенциометр сопротивлением три килоома лишь немного снизит яркость светодиодов. Десять килоом - убавит почти до нуля. Двадцать – будет регулировать со средины шкалы. Выбирайте, что вам подходит больше.
Если вы будете использовать светодиодную ленту, то вам не придётся заморачиваться с расчётом гасящего сопротивления (на схеме R2 и R3) по формулам, потому что эти сопротивления уже вмонтированы в ленту при изготовлении и всё, что нужно, это подключить её к напряжению 12 вольт. Только нужно купить ленту именно на напряжение 12 вольт. Если подключаете ленту, то сопротивления R2 и R3 исключить.
Выпускают так же светодиодные сборки, рассчитанные на питание 12 вольт, и светодиодные лампочки для автомобилей. Во всех этих устройствах при изготовлении встраивают гасящие резисторы или драйверы питания и их напрямую подключают к бортовой сети машины. Если вы в электронике делаете только первые шаги, то лучше воспользоваться именно такими устройствами.
Итак, с компонентами схемы мы определились, пора приступать к сборке.


Прикручиваем на болтик транзистор к радиатору охлаждения через теплопроводящую изолирующую прокладку (чтобы не было электрического контакта радиатора с бортовой сетью автомобиля, во избежание короткого замыкания).


Нарезаем провод на куски нужной длинны.


Зачищаем от изоляции и лудим оловом.


Зачищаем контакты светодиодной ленты.


Припаиваем провода к ленте.


Защищаем оголённые контакты при помощи клеевого пистолета.


Припаиваем провода к транзистору и изолируем из термоусадочным кембриком.


Припаиваем провода к потенциометру и изолируем их термоусадочным кембриком.

ШИМ-регулятор яркости на МК ATmega8, с батарейным питанием, и индикацией заряда.

Статья предназначена для лиц, обладающих некоторыми знаниями по радиоэлектронике, а именно:

  • что такое микроконтроллер и как его прошить,
  • что такое ШИМ-регулирование,
  • что такое светодиодный драйвер.

Проект придумывался для установки на велосипед. С чего всё начиналось. Мы с друзьями частенько участвовали в ночных вело-покатушках, поэтому нужна была фара на велосипед. Ну а обычный фонарик ставить не хотелось… нужно было что-нибудь по функциональней. Например, с регулировкой яркости «маленькая / средняя / максимальная», а так как в качестве питания планировалось использовать литий-ионный аккумулятор, то нужен был ещё и индикатор уровня заряда. В интернете я видел много подобных проектов, но они чем-то меня не устраивали. Например, мне встречались проекты ШИМ-регуляторов яркости, но у них либо отсутствовал индикатор уровня заряда, либо индикатор уровня заряда был на 1…3 светодиодах, а мне не нравилась такая маленькая информативность. Ну что ж, делать так делать, и я взялся за сборку своего проекта. Итак, в качестве индикатора заряда я беру 10 светодиодов, а вернее, беру светодиодный «столбик», вот такой:

Данный светодиодный «столбик» я заказал в интернет-магазине (в нашем городе отсутствуют радиомагазины), поэтому он приедет только через пару недель. Вместо него я временно поставил 10 обычных светодиодов.

В качестве управляющего микроконтроллера я использовал ATmega8 (либо ATmega328), так как у данного МК имеется АЦП, при помощи которого я организовал измерение уровня заряда аккумулятора. Также у данного МК имеется достаточное количество выводов (а мы ведь хотим подключить аж 10 светодиодов). Данный микроконтроллер распространён в радиомагазинах, и стоит отностиельно дёшево – в пределах 50…100 рублей, в зависимости от жадности магазина и типа корпуса.

Чтобы понять, как работает устройство, посмотрим на блок-схему:

В данной статье описывается только то, что касается ШИМ-регулятора (левая часть блок-схемы), а драйвер светодиода и сам светодиод Вы выбираете на свой вкус, тот который Вам больше подходит. Мне подходит драйвер ZXSC400, поэтому его я буду рассматривать как пример.

ШИМ-регулятор должен быть подключен к светодиодному драйверу, у которого есть функция регулировки яркости (DIM, PWM, и т. п.), например, ZXSC400. Можно использовать любой другой подходящий драйвер, главное чтобы он поддерживал ШИМ-регулировку яркости, и питался от того же аккумулятора, которым питается ШИМ-регулятор. Для тех, кто не знает что такое светодиодный драйвер – поясню: драйвер нужен для того, чтобы светодиод светился одинаково ярко как при заряженном аккумуляторе, так и при севшем аккумуляторе. Иными словами – драйвер светодиода поддерживает стабильный ток через светодиод.

Типовая схема включения светодиодного драйвера ZXSC400:

Питание этой схемы нужно соединить с питанием нашего ШИМ-регулятора, а ШИМ-выход с регулятора нужно подключить ко входу «STDN» драйвера ZXSC400. Вывод «STDN» как раз служит для регулировки яркости при помощи ШИМ сигнала. Аналогичным способом можно подключить ШИМ-регулятор ко многим другим светодиодным драйверам, но это уже отдельная тема.

Алгоритм работы устройства. При подаче питания, МК на 1 секунду отображает уровень заряда аккумулятора (на светодиодной шкале из 10 светодиодов), затем светодиодная шкала гаснет, МК переходит в режим энергосбережения, и ждёт команд управления. Всё управление я сделал на одной кнопке, чтобы на велосипеде тянуть меньше проводов. При удерживании кнопки более 1 секунды, ШИМ-регулятор включается, на ШИМ-выход подаётся сигнал со скважностью 30% (1/3 яркости светодиода). При повторном удерживании кнопки более 1 секунды, ШИМ-регулятор выключается, на ШИМ-выход не подаётся сигнал (скважность 0%). При кратковременном нажатии на кнопку, происходит переключение яркости 30% - 60% - 100%, а также на 1 секунду отображается заряд аккумулятора. Таким образом, однократное нажатие изменяет яркость светодиода, а долгое нажатие включает/выключает светодиод. Для проверки работоспособности ШИМ-регулятора, я подключил к его выходу обычный светодиод, но ещё раз повторюсь – исключительно в целях проверки работоспособности. В дальнейшем я подключу ШИМ-регулятор к драйверу ZXSC400. Более подробно и наглядно работа устройства показывается на видео (ссылка в конце статьи).

Также процесс регулировки яркости показывает следующая схема:

Что делать, если не устраивают данные значения яркости? Например, хочется чтобы было так: 1 %, затем 5 %, затем 100 %. Я предусмотрел и такой вариант. Теперь пользователь может сам установить эти три значения яркости, какие ему хочется! Для этого я написал небольшую программку, которая на основе желаемых значений генерирует файл для прошивки EEPROM. Прошив в микроконтроллер данный файл, яркости соответственно поменяются на желаемые. Прилагаю скриншот окна программы:

Если не прошивать файл EEPROM, то значения яркости останутся «по умолчанию» - 30 %, 60 %, 100 %. Правильно собранное устройство не нуждается в настройке. При желании можно лишь настроить минимальную, среднюю, и максимальную яркость по своему усмотрению. Программка и инструкция по использованию находятся в конце статьи.

Выбор используемого аккумулятора. Я использовал Li-ion аккумулятор ввиду его распространённости и дешевизны. Но в схеме я предусмотрел перемычку J1, при помощи которой можно выбрать, что мы используем в качестве питания.

Если перемычка J1 находится в положении «1», то используется один Li-ion аккумулятор. Если перемычка J1 находится в положении «2», то используются три обычные батарейки типа AAA/AA/C/D, соединённые последовательно. Перемычка J1 необходима для правильного отображения уровня заряда аккумулятора, так как у Li-ion аккумулятора рабочее напряжение находится примерно в диапазоне 3,3…4,2в, а у обычных батареек рабочее напряжение примерно равно 3,0…4,5в. Таблицы соответствия напряжений аккумулятора с показаниями индикатора я приложил внизу статьи.

Индикаторные светодиоды. Светодиоды, отображающие уровень заряда аккумулятора, могут быть любыми. Подстроить их яркость в небольших пределах можно при помощи изменения номинала токоограничивающего резистора R1. Для отображения уровня заряда используется динамическая индикация, благодаря которой достигается экономия энергии, так как в один момент времени светится только один светодиод. Про индикацию уровня заряда аккумулятора также можно посмотреть на видео (ссылка в конце статьи).

Микроконтроллер может быть как ATmega8, так и ATmega328. Оба этих микроконтроллера совместимы по расположению контактов, и различаются лишь содержанием «прошивки». Я использовал ATmega328, так как этот МК был у меня в наличии. В целях снижения энергопотребления, микроконтроллер работает от внутреннего RC-генератора на 1 МГц. Программа микроконтроллера написана в среде 4.3.6.61 (или 4.3.9.65).

В схеме применена микросхема-источник опорного напряжения TL431. С её помощью достигается неплохая точность измерения напряжения аккумулятора. Питание на TL431 подаётся с вывода PC1 микроконтроллера через резистор R3. Подача напряжения питания на TL431 происходит только во время индикации уровня заряда. После того, как светодиоды индикации гаснут, подача питающего напряжения прекращается, обеспечивая экономию энергии аккумулятора. Микросхему TL431 можно найти в негодных блоках питания от компьютеров, в сломанных зарядных устройствах от сотовых телефонов, в импульсных блоках питания от ноутбуков и различной радиоэлектронной техники. Я применил TL431 в корпусе SOIC-8 (smd вариант), но TL431 больше распространена в корпусе TO-92, поэтому я сделал несколько вариантов печатных плат.

Об эмуляции в программе " ". Проект в Proteus работает некорректно. Ввиду того, что модель ATmega8 не выходит из спящего режима, а также с тормозами отображается динамическая индикация. Если после запуска проекта, сразу удерживать кнопку, чтобы ШИМ-регулятор включился, то всё работает. Но стОит повторным удерживанием кнопки выключить ШИМ-регулятор, как МК погрузится в сон, и больше не проснётся (до перезапуска проекта). Проект в Proteus не прилагаю. Кто хочет поиграться – пишите, вышлю проект в Proteus.

Основные технические характеристики:

  • Напряжение питания, при котором гарантируется работоспособность: 2,8 ... 5 вольт
  • Частота ШИМ сигнала: 244 Гц
  • Частота динамической индикации шкалы из 10 светодиодов: 488 Гц (на 10 светодиодов) или 48,8 Гц (на каждый светодиод)
  • Количество режимов яркости, переключаемых по циклу: 3 режима
  • Возможность изменения пользователем яркости каждого из режимов: Имеется

Ниже вы можете скачать прошивки для МК ATmega8 и ATmega328

Шутов Максим, г.Вельск

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATmega8-16PU

1 В блокнот
U2 ИС источника опорного напряжения

TL431ILP

1 В блокнот
Резисторы
R1, R2 Резистор постоянный SMD 1206

330 Ом

2 В блокнот
R3 Резистор постоянный SMD 1206

1 кОм

1 В блокнот
R4 Резистор постоянный SMD 1206

10 кОм

1 В блокнот
R5 Резистор постоянный SMD 1206

47 кОм

1 В блокнот
Резистор постоянный SMD 1206

Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

Есть два варианта:

  • Регулирование ШИМ
  • Аналоговое

Эти методы контролируют проходящий через светодиод ток, но между ними есть определенные различия.
Аналоговое регулирование изменяет уровень тока, который проходит через светодиоды. А ШИМ регулирует частоту подачи тока.

ШИМ-регулирование

Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов.
Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

Виды ШИМ-регулирования

  • Двухпроводная. Часто используется в системе освещения машин. Источник питания преобразователя должен иметь схему, которая формирует сигнал ШИМ на DC-выходе.
  • Шунтирующее устройство. Чтобы сделать период включении/выключения преобразователя используют шунтирующий компонент, который обеспечивает путь для выходного тока помимо светодиода.

Параметры импульсов при ШИМ

Частота следования импульсов не меняется, поэтому никаких требований в определении яркости света к ней нет. В данном случае, меняется только ширина, или время положительного импульса.

Частота импульсов

Даже с учетом того, что особых претензий к частоте нет, существуют граничные показатели. Они определяются чувствительностью глаза человека к мельканиям. Например, если в кино мелькания кадров должны составлять 24 кадра в секунду, чтобы наш глаз воспринимал его как одно движущееся изображение.
Чтобы мелькания света воспринимались как равномерный свет, частота должна составлять не меньше 200Гц. По верхним показателям ограничений нет, но ниже никак нельзя.

Как работает регулятор ШИМ

Для непосредственного управления светодиодами применяется транзисторный ключевой каскад. Обычно для них используют транзисторы, способные накапливать большие объемы мощности.
Это необходимо при использовании светодиодных лент или мощных светодиодах.
Для небольшого количества или невысокой мощности вполне достаточно использования биполярных транзисторов. Так же можно подключать светодиоды прямо к микросхемам.

Генераторы ШИМ

В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции.
Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565.
Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать.
Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины.
Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ.
Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

Почему ШИМ?

  • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
  • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
  • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

Недостатки использования ШИМ

  • Со временем мерцание изображение может быть довольно заметно, особенно при низкой яркости или движении глаз.
  • При постоянном ярком освещении (например, свете солнца) изображение может расплываться.