» » Как измерить фазы газораспределения в двухтактном двигателе. Двухтактный двигатель. Октановые числа топливных смесей

Как измерить фазы газораспределения в двухтактном двигателе. Двухтактный двигатель. Октановые числа топливных смесей

Тем, кто связан с гоночной автомобильной или мотоциклетной техникой или просто интересуется конструкцией спортивных машин, хорошо знакомо имя инженера Вильгельма Вильгельмовича Бекмана — автора книг «Гоночные автомобили» и «Гоночные мотоциклы». Не раз он выступал и на страницах «За рулем».

Недавно вышло в свет третье издание книги «Гоночные мотоциклы» (второе было выпущено в 1969 году), переработанное и дополненное сведениями о новых конструктивных решениях и анализом тенденции дальнейшего развития двухколесных машин. Читатель найдет в книге очерк об истории зарождения мотоциклетного спорта и влиянии его на развитие мотоциклетной промышленности, получит сведения о классификации машин и соревнований, познакомится с особенностями конструкции двигателей, трансмиссии, шасси и системы зажигания гоночных мотоциклов, узнает о путях их совершенствования.

Многое из того, что применяется впервые на спортивных машинах, затем внедряется на серийных дорожных мотоциклах. Поэтому знакомство с ними позволяет как бы заглянуть в будущее и представить себе мотоцикл завтрашнего дня.

Подавляющее количество строящихся ныне в мире мотоциклетных двигателей работает по двухтактному циклу, поэтому к ним мотолюбители проявляют наибольший интерес. Предлагаем вниманию читателей отрывок из книги В. В. Бекмана, посвященный одному из важнейших вопросов развития двухтактных двигателей. Мы сделали только незначительные сокращения, изменили нумерацию рисунков и привели некоторые наименования в соответствие с употребляемыми в журнале.

В настоящее время двухтактные гоночные двигатели превосходят по мощности своих четырехтактных соперников в классах от 50 до 250 см3: в классах большего рабочего объема четырехтактные двигатели пока сохраняют конкурентоспособность. так как высокая форсировка двухтактных двигателей этих классов труднее, причем более заметным становится известный недостаток двухтактного процесса — повышенный расход топлива, требующий увеличения объема топливных баков и более частых остановок для заправки.

Прототипом большинства современных двухтактных двигателей гоночного типа является конструкция, разработанная фирмой МЦ (ГДР). Работы по усовершенствованию двухтактных двигателей, выполненные этой фирмой, обеспечили гоночным мотоциклам МЦ классов 125 и 250 см3 высокие динамические качества, и их конструкция в той или иной степени была скопирована многими фирмами в других странах мира.

Гоночные двигатели МЦ (рис. 1) имеют простую конструкцию и похожи как по устройству, так и по внешнему виду на обычные двухтактные двигатели.

А — общий вид; б — расположение газораспределительных каналов

За 13 лет мощность гоночного двигателя МЦ 125 см3 выросла с 8 до 30 л. с.; уже в 1962 году была достигнута литровая мощность 200 л. с./л. Одним из существенных элементов двигателя является дисковый вращающийся золотник, предложенный Д. Циммерманом. Он позволяет получить несимметричные фазы впуска и выгодную форму впускного тракта: благодаря этому возрастает коэффициент наполнения картера. Дисковый золотник изготовляют из тонкой (около 0,5 мм) листовой пружинной стали. Оптимальная толщина диска найдена опытным путем. Дисковый золотник работает как мебранный клапан, прижимаясь к отверстию впускного канала, когда в картере происходит сжатие горючей смеси. При увеличенной или уменьшенной толщине золотника наблюдается ускоренный износ диска. Слишком тонкий диск прогибается в сторону впускного канала, что влечет за собой увеличение силы трения между диском и крышкой картера; увеличенная толщина диска также ведет к увеличенным потерям на трение. В результате доводки конструкции срок службы дискового золотника был увеличен с 3 до 2000 часов.

Дисковый золотник не вносит особого усложнения в устройство двигателя. Золотник устанавливается на валу посредством скользящего шпоночного или шлицевого соединения, чтобы диск мог занимать свободное положение и не защемляться в узком пространстве между стенкой картера и крышкой.

По сравнению с классической системой управления впускным окном нижней кромкой поршня золотник дает возможность раньше открыть впускное окно и долго держать его открытым, что способствует повышению мощности как на высоких, так и на средних частотах вращения. При обычном устройстве газораспределения раннее открытие впускного окна неизбежно связано с большим запаздыванием его закрытия: это полезно для получения максимальной мощности, но связано с обратным выбросом горючей смеси на средних режимах и соответствующим ухудшением характеристики крутящего момента и пусковых качеств двигателя.

На двухцилиндровых двигателях с параллельными цилиндрами дисковые золотники устанавливают по концам коленчатого вала, что при выступающих справа и слева карбюраторах дает большие габариты по ширине двигателя, увеличивает лобовую площадь мотоцикла и ухудшает его внешнюю форму. Для устранения этого недостатка иногда применяли конструкцию в виде двух спаренных под углом одноцилиндровых двигателей с общим картером и воздушным охлаждением («Дерби», Ява).

В отличие от двигателя Ява цилиндры спаренных двигателей могут занимать вертикальное положение: при этом требуется водяное охлаждение, так как задний цилиндр заслонен передним. По такой схеме был изготовлен один из гоночных двигателей МЦ 125 см3.

Трехцилиндровый двигатель Suzuki (50 см3, литровая мощность около 400 л. с./л) с дисковыми золотниками по существу состоял из объединенных в одном блоке трех одноцилиндровых двигателей с самостоятельными коленчатыми валами: два цилиндра были горизонтальными. один вертикальным.

Двигатели с золотнинами на впуске конструировались и в четырехцилиндровых вариантах. Типичным примером могут служить двигатели Yamaha, изготовленные в виде двух спаренных шестеренной передачей двухцилиндровых двигателей с параллельными цилиндрами; одна пара цилиндров расположена горизонтально, вторая — под углом вверх. Двигатель 250 см3 развивал до 75 л. с., а мощность варианта 125 см3 достигала 44 л. с. при 17 800 об/мин.

По аналогичной схеме сконструирован и четырехцилиндровый двигатель Ява (350 см3, 48x47) с золотниками на впуске, представляющий собой два спаренных двухцилиндровых двигателя с водяным охлаждением. Он развивает мощность 72 л. с. при 1300 об /мин. Еще больше мощность четырехцилиндрового двигателя «Морбиделли» класса 350 см3 такого же типа — 85 л. с.

Ввиду того, что дисковые золотники устанавливаются по концам коленчатого вала, отбор мощности в многоцилиндровых конструкциях с такой системой впуска обычно производится через шестерню на средней шейке вала между отсеками картера. При дисковых золотниках рассматриваемого типа увеличение числа цилиндров двигателя свыше четырех нецелесообразно, так как дальнейшее спаривание двухцилиндровых двигателей привело бы к очень громоздкой конструкции; даже в четырехцилиндровом исполнении двигатель получается на пределе допустимых габаритов.

В последнее время на некоторых гоночных двигателях «Ямаха» применяют автоматические мембранные клапаны во впускном канале между карбюратором и цилиндром (рис. 2, а). Клапан представляет собой тонкую эластичную пластинку, отгибающуюся под действием разрежения в картере и освобождающую проход для горючей смеси. Во избежание поломки клапанов предусмотрены ограничители их хода. При средних режимах работы клапаны достаточно быстро закрываются, чтобы предупредить обратный выброс горючей смеси, что улучшает характеристику крутящего момента двигателя. Такие клапаны на основании практических наблюдений могут нормально функционировать при скоростных режимах до 10 000 об/мин. При более высоких числах оборотов их работоспособность проблематична.

: а — схема устройства; б —начало наполнения картера; в — подсос смеси через клапаны в цилиндр; 1 — ограничитель; 2 — мембрана; 3 — окно в поршне

В двигателях с мембранными клапанами для улучшения наполнения целесообразно поддерживать сообщение между впускным каналом и подпоршневым пространством или продувочным каналом при положении поршня вблизи Н.М.Т. Для этого в стенке поршня со стороны впуска предусматривают соответствующие окна 3 (рис. 2, б). Мембранные клапаны обеспечивают дополнительный подсос горючей смеси, когда во время продувки в цилиндрах и картере образуется разрежение (рис. 2, в).

Высокую мощность развивают также двухтактные двигатели, у которых процессом впуска горючей смеси в картер управляет поршень, как у подавляющего большинства обычных двигателей массового производства. В основном это относится к двигателям рабочим объемом 250 см3 и более. Примерами могут служить мотоциклы «Ямаха» и «Харлей-Давидсон» (250 см3 — 60 л. с.;

350 см3 — 70 л. с.), а также мотоцикл «Сузуки» с двухцилиндровым двигателем класса 500 см3 мощностью 75 л. с., занявший первое место в гонке Т.Т. (Турист Трофи) 1973 года. Форсирование этих двигателей осуществляется так же, как и в случае использования дисковых золотников, тщательной конструктивной проработкой органов газораспределения и на основе изучения взаимного влияния впускного и выпускного трактов.

Двухтактные двигатели независимо от системы управления впуском имеют выпрямленную форму впускного тракта, который направлен в подпоршневое пространство, куда поступает горючая смесь; по отношению к оси цилиндра впускной тракт может быть перпендикулярным или с наклоном снизу вверх или сверху вниз. Такая форма впускного тракта благоприятна для использования эффекта резонансного наддува. Поток горючей смеси во впускном тракте непрерывно пульсирует, причем в нем возникают волны разрежения и повышенного давления. Настройка впускного тракта за счет подбора его размеров (длины и проходных сечений) позволяет обеспечить в определенном интервале чисел оборотов закрытие впускного окна в момент входа в картер волны повышенного давления, что увеличивает коэффициент наполнения и повышает мощность двигателя.

При значениях коэффициента наполнения картера, превышающих единицу, двухтактный двигатель должен был бы развивать вдвое большую мощность по сравнению с четырехтактным. В действительности этого не происходит вследствие существенных потерь свежей смеси в выхлоп н перемешивания поступившего в цилиндр заряда с остаточными газами от предыдущего рабочего цикла. Несовершенство рабочего цикла двухтактного двигателя обусловлено одновременным протеканием процессов наполнения цилиндра и его очистки от продуктов сгорания, тогда как в четырехтактном двигателе эти процессы разделены во времени.

Процессы газообмена в двухтактном двигателе отличаются большой сложностью и до сих пор плохо поддаются расчету. Поэтому форсирование двигателей ведется, главным образом, путем экспериментального подбора соотношений и размеров конструктивных элементов органов газораспределения от впускного патрубка карбюратора до концевого патрубка выхлопной трубы. Со временем был накоплен большой опыт по форсированию двухтактных двигателей, описанный в различных исследованиях.

В первых конструкциях гоночных двигателей МЦ была использована возратно-петлевая продувка типа «Шнюрле» с двумя продувочными каналами. Значительное улучшение мощностных показателей было получено благодаря добавлению третьего продувочного канала (см рис. 1), расположенного спереди напротив выпускных окон. Для перепуска через этот канал на поршне предусмотрено специальное окно. Дополнительный продувочный канал устранил образование подушки горячих газов под дном поршня. Благодаря этому каналу удалось увеличить наполнение цилиндра, улучшить охлаждение и смазку свежей смесью игольчатого подшипника верхней головки шатуна, а также облегчить температурный режим работы дна поршня. В результате мощность двигателя повысилась на 10 процентов, а прогары поршней и поломки подшипника верхней головки шатуна были устранены.

Качество продувки зависит от степени сжатия горючей смеси в картере; на гоночных двигателях этот параметр выдерживается в пределах 1,45 — 1,65, что требует весьма компактной конструкции кривошипно-шатунного механизма.

Получение высоких литровых мощностей возможно за счет широких фаз распределения и большой ширины газораспределительных окон.

Ширина окон гоночных двигателей, измеренная центральным углом в поперечном сечении цилиндра, достигает 80 — 90 градусов, что создает тяжелые условия работы для поршневых колец. Зато при такой ширине окон в современных двигателях обходятся без склонных к перегреву перемычек. Увеличение высоты продувочных окон сдвигает максимальный крутящий момент в область более низкого числа оборотов, а увеличение высоты выпускных окон создает обратный эффект.

Рис. 3. Системы продувки: а — с третьим продувочным окном, б — с двумя дополнительными продувочными каналами; в — с разветвляющимися продувочными каналами.

Система продувки с третьим дополнительным продувочным каналом (см. рис. 1) удобна для двигателей с золотником, у которых впускной канал расположен сбоку, а зона цилиндра напротив выпускного окна свободна для размещения в ней продувочного окна; последнее может иметь перемычку, как показано на рис. 3, а. Дополнительное продувочное окно способствует образованию потока горючей смеси, огибающего полость цилиндра (петлевая продувка). Весьма существенное значение для эффективности процесса газообмена имеют углы входа продувочных каналов; от них зависят форма и направление потока смеси в цилиндре. Горизонтальный угол а, колеблется в пределах 50 — 60 градусов, причем большее значение соответствует более высокому форсированию двигателя. Вертикальный угол a2, равен 45 — 50 градусов. отношение сечений дополнительного и основного продувочных окон составляет около 0,4.

На двигателях без золотника карбюраторы и впускные окна, как правило, расположены на задней стороне цилиндров. В этом случае обычно применяют иную систему продувки — с двумя боковыми дополнительными продувочными каналами (рис. 3,б). Горизонтальный угол входа а, (см. рис. 3,а) дополнительных каналов — около 90 градусов. Вертикальный угол входа продувочных наналов колеблется для различных моделей в довольно широких пределах: на модели «Ямаха» ТД2 класса 250 см3 он составляет для главных продувочных каналов 15 градусов, а для дополнительных — 0 градусов; на модели «Ямаха» ТД2 класса 350 см3 соответственно 0 и 45 градусов.

Иногда применяется вариант этой системы продувки с разветвляющимися продувочными каналами (рис. 3,в). Дополнительные продувочные окна расположены напротив выпускного окна, и, следовательно, подобное устройство приближается к первой из рассмотренных систем, имеющей три окна. Вертикальный угол входа дополнительных продувочных каналов 45 — 50 градусов. Отношение сечений дополнительных и основных продувочных окон также около 0,4.

Рис. 4. Схемы движения газов в цилиндре: а — с разветвляющимися ка налами; б — с параллельными.

На рис. 4 показаны схемы движения газов в цилиндре во время процесса продувки. При остром угле входа дополнительных продувочных каналов поступающий из них поток свежей смеси удаляет клубок отработавших газов в середине цилиндра, не захватываемый потоком смеси из основных продувочных каналов. Возможны и другие варианты систем продувки по количеству продувочных окон.

Следует заметить, что на многих двигателях продолжительность открытия дополнительных продувочных окон на 2 — 3 градуса меньше, чем у основных.

На некоторых двигателях «Ямаха» дополнительные продувочные каналы были выполнены в виде желобков на внутренней поверхности цилиндра; внутренней стенкой канала является здесь стенка поршня при его положениях вблизи от Н.М.Т.

На процессе продувки сказывается и профиль продувочных каналов. Плавная форма без резких изгибов дает меньшие перепады давления и улучшает показатели работы двигателя, в особенности на промежуточных режимах.

Приведенные в этом разделе сведения показывают, что двухтактные двигатели выделяются простотой своего устройства.

Повышение удельной мощности двигателей этого типа в течение последнего десятилетия не сопровождалось какими-либо существенными изменениями базовой конструкции; оно явилось следствием тщательного экспериментального подбора соотношений и размеров ранее известных конструктивных элементов.

Выпускной клапан начинает открываться в конце про­цесса расширения с опережением относительно н.м.т. на угол φ о.в. = 30ч-75° (рис. 20) и закрывается после в.м.т. с запаздыванием на угол φ з.в., когда поршень движется в такте наполнения в направлении к н.м.т. Начало откры­тия и закрытие впускного клапана также сдвинуты отно­сительно мертвых точек: открытие начинается до в.м.т. с опережением на угол φ 0 . вп, а закрытие происходит пос­ле н.м.т. с запаздыванием на угол φ з.вп. в начале такта сжатия. Большая часть процессов выпуска и наполнения протекает раздельно, но около в.м.т. впускной и выпуск­ной клапаны открыты некоторое время одновременно. Продолжительность перекрытия клапанов, равная сумме углов φ з.в + φ о.вп, невелика у поршневых двигателей (рис. 20, а), а у комбинированных может быть значи­тельной (рис. 20, б). Общая продолжительность газооб­мена составляет φ о.в + 360 о + φ з.вп =400-520 о; у высоко­оборотных двигателей она больше.

Периоды газообмена в двухтактных двигателях

В двухтактном двигателе процессы газообмена про­исходят при перемещении поршня вблизи н.м.т. и зани­мают часть хода поршня в тактах расширения и сжатия.

В двигателях с петлевой схемой газообмена и впуск­ные, и выяускные окна открываются поршнем, поэтому фазы газораспределения и диаграммы площади попереч­ного сечения окон симметричны относительно н.м.т. (рис. 24, а). Во всех двигателях с прямоточными схема­ми газообмена (рис. 24, б) фазы открытия выпускных окон (или клапанов) выполняют несимметричными отно­сительно н.м.т., достигая тем самым лучшего наполнения цилиндра. Обычно впускные окна и выпускные окна (или клапаны) закрываются одновременно или с небольшой разницей по углу. Осуществить несимметричные фазы возможно и в двигателе с петлевой схемой газообмена,

если установить (на впуске или выпуске) дополнитель­ные устройства - золотники или клапаны. Из-за недоста­точной надежности подобных устройств в настоящее вре­мя их не применяют.

Общая продолжительность процессов газообмена в двухтактных двигателях соответствует 120-150° угла поворота коленчатого вала, что в 3-3,5 раза меньше, чем в четырехтактных. Угол открытия выпускных окон (или клапанов) φ о.в. = 50-90° до н.м.т., а угол предва­рения их открытия φ пр = 10-15 0 . В высокооборотных двигателях с выпуском через клапаны эти углы больше, а в двигателях с выпуском через окна - меньше.

В двухтактных двигателях процессы выпуска и на­полнения происходят в большей части совместно - при одновременно открытых впускных (продувочных) и вы­пускных окнах (или выпускных клапанах). Поэтому воз­дух (или горючая смесь) поступает в цилиндр, как пра­вило, при условии, что давление перед впускными окна­ми больше давления за выпускными окнами (клапа­нами) .

Литература:

    Наливайко В.С., Ступаченко А.Н. Сыпко С.А. Методические указания к проведению лабораторных работ по курсу «Судовые ДВС», Николаев, НКИ, 1987, 41с.

    Судовые двигатели внутреннего сгорания. Учебник/ Ю.Я. Фомин, А.И. Горбань, В.В. Добровольский, А.И. Лукин и др.-Л.:Судостроение, 1989 – 344 с.:ил.

    Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей: Под ред. А.С. Орлина, М.Г. Круглова –М.: Машиностроение,1983ю – 372стр.

    Ваншейдт В.А. Судовые двигатели внутреннего сгорания. Л. Судостроение, 1977.-392с.

Фазы газораспределения

Расположение каналов и фазы газораспределения двигателя

Возвратно-поступательное движение (вверх и вниз) поршня двигателя позволяет ему действовать в качестве воздушного компрессора. Изначально, воздушно-топливная смесь движется в картер под поршнем, и затем перемещается в цилиндр (выше поршня), где она сжимается и воспламеняется. Как только газы сгорают, температура и давление стремительно поднимаются. Это давление движет поршень в нижнюю сторону его хода, где выхлопные газы, в конечном счете, вычищаются. Звучит просто, но очень важными являются очень точная конструкция каналов - форма, размер, положение и временные фазы - если вы хотите добиться значительной производительности двигателя.


Перепускные каналы проводят свежую воздушно-топливную смесь в цилиндр перед сгоранием, пока выхлопные газы вычищаются через выхлопное отверстие.

ОСНОВЫ

Если вы достаточно любопытны для того, чтобы разобрать ваш двигатель, вы вероятно видели отверстия в гильзе и коленчатом вале. Эти отверстия известны, как каналы или отверстия, и в двухтактном двигателе они имеют 3 функции:

1. Впуск - позволяет свежей воздушно-топливной смеси поступать в картер ниже поршня.

2. Перепуск - перемещение воздушно-топливной смеси из картера в цилиндр выше поршня.

3. Выхлоп - здесь отработанные газы выходят из двигателя после сгорания.

Отверстия открываются и закрываются движением поршня и коленчатого вала, и в противоположность двигателям с механическими клапанами, для своего функционирования они не требуют дополнительной энергии от двигателя.

Отверстия, которые вы видите, являются необходимыми для правильной работы двухтактного двигателя.

ТИПЫ КАНАЛОВ

ВПУСКНОЕ ОТВЕРСТИЕ. Автомодельные двигатели используют систему впуска на базе поворотного золотника коленчатого вала. Как он работает: канал, изготовленный в шейке вала, выравнивается с отверстием для впуска воздуха в корпусе двигателя (под карбюратором) при каждом обороте вала. Воздушно-топливная смесь проходит через открытое отверстие в поверхности шейки коленчатого вала и затем через канал в центре коленчатого вала и, наконец, в картер двигателя.


Впускное отверстие в коленчатом вале "отмеряет" сколько воздуха и топлива поступает в двигатель. Воздушно-топливная смесь затем поступает в картер через канал в центре коленчатого вала.

ПЕРЕПУСКНЫЕ ОТВЕРСТИЯ. Эти отверстия изготовлены в стенке цилиндра и поочередно закрываются и открываются поршнем. Воздушно-топливная смесь из картера (ниже поршня) движется через обходные каналы снаружи цилиндра к перепускным отверстиям.

Двухтактные автомодельные двигатели используют множество комбинаций перепускных отверстий. Может существовать от двух до 10-11 перепускных отверстий различной формы и размеров - плюс выхлопное отверстие или отверстия (да, может быть даже несколько выхлопных отверстий).

РАСПОЛОЖЕНИЕ КАНАЛОВ ШНУРЛЕ: В двухтактных двигателях используется множество конфигураций перепускных и выхлопных каналов, но автомодельные двигатели используют основную конфигурацию, известную как расположение каналов Шнурле, так что мы будем обсуждать только этот вариант.

В системе Шнурле, два перепускных отверстия направлены вверх и в сторону от единственного выхлопного отверстия, которое находится между ними. Свежая топливная смесь намеренно направляется в самую удаленную от выхлопного отверстия точку. В этой точке, свежая смесь делает петлю в сторону головки цилиндра и выталкивает выхлопные газы через выхлопное отверстие.

Отверстия Шнурле направляют воздушно-топливную смесь в сторону от выхлопного отверстия.

БУСТ ОТВЕРСТИЕ: Буст отверстие является важным улучшением в основном расположении каналов Шнурле. Оно расположено напротив выхлопного отверстия и легко отличимо от остальных отверстий цилиндра по его острому углу вверх. Буст отверстие не только создает другой путь, по которому воздушно-топливная смесь может поступать в цилиндр, но также делает это под углом, который направляет смесь в сторону свечи накаливания, находящейся вверху цилиндра. Это способствует лучшему наполнению цилиндра и улучшает продувку выхлопных газов.

Буст отверстие противоположно выхлопному отверстию. Его острый угол вверх помогает направить свежую воздушно-топливную смесь в сторону свечи накаливания вверху цилиндра.

МНОГО - НЕ ВСЕГДА ХОРОШО: Большее значение, чем количество каналов, имеют фазы газораспределения (т.е., когда отверстия открываются и закрываются), длительность (как долго они остаются открытыми) и площадь (размер отверстий), так что не впечатляйтесь количеством каналов, объявленных для данного двигателя. Правильно сконструированный двигатель с 3-мя каналами может быть более мощным, чем хуже спроектированный 7-ми канальный двигатель.

Правильно разработанные каналы помогают направить течение воздушно-топливной смеси и выхлопных газов. Большее количество каналов иногда равняется большей мощности, но не всегда.

ФАЗЫ ГАЗОРАСПРЕДЕЛЕНИЯ

Фазы газораспределения указывают на точки в цикле двигателя, в которых отверстия открываются и закрываются. Эти точки обычно отмеряются от ВМТ (TDC) (верхняя мертвая точка) или НМТ (BDC) (нижняя мертвая точка), от той, к которой поршень находится ближе.

В дополнение к открытию и закрытию отверстий, фазы газораспределения показывают нам, как долго отверстие остается открытым (длительность). Это важно при определении рабочей скорости двигателя, высокоскоростные двигатели дольше перемещают газы, чем низкоскоростные двигатели.

Большинство экспертов измеряют открытие и закрытие отверстий в градусах вращения коленчатого вала. Некоторые разработчики и инженеры используют систему, которая измеряет открытие и закрытие отверстий в процентах от хода поршня от ВМТ (TDC). Хотя есть технические преимущества в использовании последней системы, первая является наиболее используемой.

Для измерения событий фаз газораспределения к коленчатому валу присоединяется угломерное колесо. Неподвижный указатель выравнивается с угломерным колесом и точно согласуется с положением поршня в ВМТ (TDC), обеспечивая измерение фаз впуска, перепуска и выхлопа.

Все, что вам нужно для начала измерения фаз газораспределения вашего двигателя - это угломерное колесо, указатель и прочное крепление двигателя. Этот метод используется всеми конструкторами двигателей для составления карты фаз газораспределения и определения мест возможных улучшений.

КАНАЛЫ И ПРОДУВКА

В терминологии двигателя, "продувка" означает очистку объема - другими словами очистка цилиндра от выхлопных газов и движение свежей воздушно-топливной смеси из картера в цилиндр. Для разработчика двигателей, очистка цилиндра от выхлопных газов является только половиной проблемы, одновременная замена этих газов на свежую воздушно-топливную смесь, является другой проблемой.

Во время работы двигателя часть свежей смеси, переданной в цилиндр, смешивается с продуваемыми выхлопными газами и снижает эффективность и мощность двигателя. В течение многих лет было испробовано много канальных систем для минимизации этого смешивания и загрязнения, конструкция была улучшена, но это явление продолжает влиять на производительность двухтактных двигателей. Размер, положение и направление этих отверстий определяет, насколько успешной будет продувка, и насколько хорошо будет работать двигатель.

Воздушно-топливная смесь вытекает из перепускного отверстия слева, заполняет цилиндр для следующего цикла сгорания и помогает "продувать" выхлопные газы через выхлопное отверстие справа.

ФАЗЫ ГАЗОРАСПРЕДЕЛЕНИЯ

В двухтактном двигателе одновременно происходит несколько событий. Они перекрываются и влияют друг на друга, и их эффект трудно отследить просто просматривая числа фаз газораспределения. Диаграмма фаз газораспределения делает эти числа более понятными.

На примере диаграммы, выхлопное отверстие открывается при 80 градусах Перед НМТ (BBDC). Это также 100 градусов После ВМТ (ATDC). Поскольку выхлопное отверстие открывается ближе к НМТ, фаза отмеряется от этого положения. Общее время открытия (длительность) любого канала определяется прибавлением индивидуальных вращений.


ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ

Двигатель Mungen MT12, использованный для привода Yokomo GT-4R, показал ровную мощность, несмотря на то, что он имел очень значительный прирост в пиковой мощности. Это было достигнуто путем оптимизации эффективности фаз газораспределения для гонок.

Я недавно разговаривал с известным экспертом по модификации двигателей Деннисом Ричи из Техаса. Деннис модифицировал каждый год сотни двигателей для катеров и автомобилей своих покупателей, фактически, он модифицировал двигатель Mugen MT12 Стива Понда для Yokomo GT-4R, и он работал очень хорошо. Он любезно выделил свое время для дискуссии о каналах, фазах газораспределения и модификации каналов.

Деннис Ричи видит значительную разницу в философии фаз газораспределения между дорогими двигателями объема.12 и.15 и двигателями объема.21. Согласно Денису, маленькие двигатели имеют гораздо более консервативные фазы газораспределения.

Здесь приведен типичный пример:

  • ВПУСК - открывается при 40 градусах После НМТ, закрывается при 48 градусах После ВМТ, длительность 188 градусов.
  • ВЫХЛОП - открывается при 78 градусах Перед НМТ, закрывается при 78 градусах После НМТ, длительность 156 градусов.
  • ПЕРЕПУСК - открывается при 60 градусах Перед НМТ, закрывается при 60 градусах После НМТ, длительность 120 градусов.

Он сказал, "Хотя длительность выхлопа и перепуска является до некоторой степени низкой, наибольшее увеличение в производительности высоких оборотов получается за счет увеличения длительности впуска." Согласно моим вычислениям, если открытие впускного отверстия остается неизменным и закрытие продвигается к примерно 65 градусам После ВМТ (ATDC), то длительность впуска расширяется до 205 градусов - 9% увеличения. Наилучшие двигатели объема.21 (3,44 куб. см) всегда имеют продвинутые фазы газораспределения.

Здесь приведены некоторые типовые длительности для продвинутых двигателей объема.21 куб. дюйм (3,44 куб. см):
- впуск 210 градусов;
- выхлоп 180 градусов;
- перепуск 126 градусов.

Деннис сказал, что эти двигатели "благополучно" используют топливо с 30% нитрометана и после модификаций их пиковая мощность находится между 33 000 и 34 000 оборотов.

Перепускное и выхлопное отверстия позволяют сжатому газу выходить сверху и снизу поршня во время циклов двигателя. Наличие достаточного времени (длительности фазы) для этого, это только половина истории. Наличие достаточно большого отверстия (площадь отверстия), это вторая половина. Скажем по-другому: время, требуемое для перемещения некоторого количества газа через отверстие, зависит от площади отверстия.

Аналогия может быть полезной: 50 человек имеют 30 секунд, чтобы покинуть помещение после сигнала пожарной тревоги. Если дверь открыта полностью, они легко выйдут из помещения в пределах отведенного времени. Если дверь неисправна и открыта только частично, люди по-прежнему могут выйти, но в дверях происходит давка, которая позволит максимум 35 человекам покинуть помещение в назначенное время. Арифметика показывает, что частично открытая дверь позволит выйти в назначенное время только 70% людей. Сходная ситуация существует для газов, пытающихся пройти через перепускное и выхлопное отверстия. Если течение слишком ограничено, отверстие может быть расширено для увеличения его площади, или оно может быть сделано выше для увеличения и его площади, и длительности фазы. Каждое из решение имеет различный эффект. Принятие решения, что из этого будет лучше, является предметом длительного изучения и опыта.

Целью большинства модификаторов двигателей является увеличение мощности. Самый простой способ сделать это, это добиться более быстрой работы двигателя. Когда максимальные обороты увеличиваются, каналы остаются открытыми на более короткое время. Основываясь на опыте с конкретным двигателем, модификатор расширяет отверстие или увеличивает его высоту - или комбинирует оба изменения. Эта практика известна как "портирование" (модификация каналов или отверстий).

Формы, размеры и положения отверстий весьма критичны для производительности двигателя, и вы не можете сделать одно изменение без влияния на производительность двигателя где-то в другом месте. Это всегда компромисс.


Отрезки времени от начала момента открытия клапанов двигателя до их полного закрытия относительно мертвых точек движения поршня получили наименование фазы газораспределения. Их влияние на работу двигателя очень велико. Так, от продолжительности фаз зависит эффективность заполнения и очистки цилиндров в процессе работы мотора. Это напрямую определяет экономичность расхода топлива, мощность и крутящий момент.

Сущность и роль фаз газораспределения

На данный момент существуют двигатели, в которых фазы не могут изменяться принудительно, и двигатели, оснащенные механизмами (например, CVVT). Для первого типа двигателей фазы подбираются эксперементально при конструировании и расчете силового агрегата.

Нерегулируемые и регулируемые фазы газораспределения

Визуально все они отображаются на специальных диаграммах фаз газораспределения. Верхняя и нижняя мертвые точки (ВМТ и НМТ соответственно) представляют собой крайние позиции поршня, движущегося в цилиндре, которые соответствуют наибольшему и наименьшему расстоянию между произвольной точкой поршня и осью вращения коленвала мотора. Точки начала открытия и закрытия клапанов (длина фазы) показываются в градусах и рассматриваются относительно вращения коленчатого вала.

Управление фазами осуществляется при помощи (ГРМ), который состоит из следующих элементов:

  • кулачковый распредвал (один или два);
  • цепной или ременной привод от коленвала к распредвалу.

Газораспределительный механизм

Всегда состоит из тактов, каждому из которых соответствует определенное положение клапанов на впуске и выпуске. Таким образом, начало и конец фазы зависят от угла положения коленвала, который связан с распределительным валом, управляющим положением клапанов.

За один оборот распредвала коленчатый вал выполняет два оборота и его суммарный угол поворота за рабочий цикл равен 720°.

Круговая диаграмма фаз газораспределения

Работу фаз газораспределения для четырехтактного двигателя рассмотрим на следующем примере (см. картинку):

  1. Впуск . На этом этапе поршень движется от ВМТ к НМТ, а коленвал поворачивается на 180º. Осуществляется закрытие выпускного клапана и последующее открытие впускного. Последние происходит с опережением на 12º.
  2. Сжатие . Поршень перемещается от НМТ к ВМТ, а коленвал совершает еще один поворот на 180º (360º от начального положения). Выпускной клапан остается в закрытом положении, а впускной остается открытым, пока коленвал не повернется на 40º.
  3. Рабочий ход . Поршень идет от ВМТ к НМТ под действием силы воспламенения топливовоздушной смеси. Впускной клапан находится в закрытом положении, а выпускной открывается с опережением, когда коленвал еще не дошел 42º до НМТ. На этом такте полный поворот коленвала составляет также 180º (540º от начального положения).
  4. Выпуск . Поршень идет от НМТ к ВМТ и при этом выталкивает отработавшие газы. В этот момент впускной клапан закрыт (откроется за 12º до ВМТ), а выпускной остается в открытом положении и после достижения коленвалом ВМТ еще на 10º. Общая величина поворота коленвала на этом такте также 180º (720º от начальной точки).

Фазы грм также зависят от профиля и позиции кулачков распредвала. Так, если они одинаковы на впуске и выпуске, то длительность открытия клапанов также будет одинакова.

Почему выполняется запаздывание и опережение срабатывания клапанов?

Чтобы улучшить наполнение цилиндров, а также обеспечить более интенсивную очистку от отработавших газов, срабатывание клапанов происходит не в момент достижения поршня мертвых точек, а с небольшим опережением или запаздыванием. Так, открытие впускного клапана выполняется до момента прохождения поршнем ВМТ (от 5° до 30°). Это позволяет обеспечить более интенсивное нагнетание свежего заряда в камеру сгорания. В свою очередь, закрытие впускного клапана происходит с запаздыванием (после того как поршень достиг нижней мертвой точки), что позволяет продолжить наполнение цилиндра горючим за счет сил инерции, так называемый инерционный наддув.

Выпускной клапан также открывается с опережением (от 40° до 80°) до момента достижения поршнем НМТ, что позволяет обеспечить выход большей части отработавших газов под действием собственного давления. Закрытие выпускного клапана, напротив, происходит с запаздыванием (после прохождения поршнем верхней мертвой точки), что позволяет силам инерции продолжить удаление отработавших газов из полости цилиндра и делает более эффективной его очистку.

Углы опережения и запаздывания не являются общими для всех двигателей. Более мощные и быстроходные имеют большие значения этих интервалов. Таким образом, их фазы газораспределения будут шире.

Этап работы двигателя, при котором оба клапана открыты одновременно, получил название перекрытие клапанов. Как правило, величина перекрытия составляет около 10°. При этом, поскольку длительность перекрытия очень мала, а раскрытие клапанов незначительно, утечки не происходит. Это довольно благоприятный этап для наполнения и очистки цилиндров, что особенно важно при высоких оборотах.

В начале открытия впускного клапана текущий уровень давления в камере сгорания выше, чем атмосферное. В результате отработавшие газы очень быстро перемещаются к выпускному клапану. Когда двигатель перейдет на такт впуска, в камере установится высокое разрежение, выпускной клапан полностью закроется, а впускной раскроется на достаточную для интенсивного наполнения цилиндра величину сечения.

Особенности регулируемых фаз газораспределения

При высоких скоростях двигателю автомобиля необходимо больше объема воздуха. И поскольку в нерегулируемых ГРМ клапаны могут закрыться до того, как в камеру сгорания поступает его достаточное количество, работа мотора оказывается неэффективной. Для решения этой проблемы были разработаны различные способы регулировки фаз газораспределения.


Клапан регулировки фаз газораспределения

Первые моторы, имеющие подобную функцию, позволяли выполнять ступенчатую регулировку, которая позволяла менять длину фазы в зависимости от достижения двигателем определенных величин. Со временем появились бесступенчатые конструкции, позволяющие выполнить более плавную и оптимальную настройку.

Простейшим решением является система сдвига фаз (CVVT), реализуемая путем поворота распределительного вала относительно коленвала на определенный угол. Это позволяет изменить момент открытия и закрытия клапанов, но фактическая продолжительность фазы остается неизменной.

Чтобы изменить непосредственно длительность фазы, в ряде автомобилей используются несколько кулачковых механизмов, а также колеблющиеся кулачки. Для точной работы регуляторов применяются комплексы из датчиков, контроллера и исполнительных механизмов. Управление такими устройствами может быть электрическим или гидравлическим.

Одной из основных причин внедрения систем с регулировкой ГРМ является ужесточение экологических стандартов по уровню токсичности отработавших газов. Это означает, что для большинства производителей вопрос оптимизации фаз газораспределения остается одним из важнейших.

Качество работы двигателя внутреннего сгорания автомобиля зависит от многих факторов, таких как мощность, коэффициент полезного действия, объем цилиндров.

Большое значение в моторе имеют фазы газораспределения, и от того, как происходит перекрытие клапанов, зависит экономичность ДВС, его приемистость, стабильность работы на холостых оборотах.
В стандартных простых двигателях изменение фаз ГРМ не предусматривается, и такие моторы не отличаются высокой эффективностью. Но в последнее время все чаще на автомашинах передовых компаний, таких как Хонда, Мерседес, Тойота, Ауди все чаще стали применяться силовые агрегаты с возможностью изменения смещения распределительных валов по мере изменения количества оборотов в ДВС.

Диаграмма фаз газораспределения двухтактного двигателя

Двухтактный двигатель отличается от четырехтактного тем, что рабочий цикл у него проходит за один оборот коленвала, в то же время на 4-тактных ДВС он происходит за два оборота. Фазы газораспределения в ДВС определяются продолжительностью открытия клапанов – выпускных и впускных, угол перекрытия клапанов обозначается в градусах положения к/в.

В 4-тактных моторах цикл наполнения рабочей смеси происходит за 10-20 градусов до того, как поршень придет в верхнюю мертвую точку, и заканчивается через 45-65º, а в некоторых ДВС и позднее (до ста градусов), после того как поршень пройдет нижнюю точку. Общая продолжительность впуска в 4-тактных моторах может длиться 240-300 градусов, что обеспечивает хорошую наполняемость цилиндров рабочей смесью.

В 2-тактных движках продолжительность впуска топливовоздушной смеси длится на повороте коленвала приблизительно 120-150º, также меньше длится и продувка, поэтому наполнение рабочей смесью и очистка выхлопных газов у двухтактных ДВС всегда хуже, чем у 4-тактных силовых агрегатов. На рисунке ниже показана диаграмма фаз газораспределения двухтактного мотоциклетного двигателя движка К-175.

Двухтактные движки применяются на автомобилях нечасто, так как они обладают более низким КПД, худшей экономичностью и плохой очисткой выхлопных газов от вредных примесей. Особенно актуален последний фактор – в связи с ужесточением норм экологии важно, чтобы в выхлопе двигателя содержалось минимальное количество CO.

Но все же у 2-хтактных ДВС есть и свои преимущества, особенно у дизельных моделей:

  • силовые агрегаты компактнее и легче;
  • они дешевле стоят;
  • двухтактный мотор быстрее разгоняется.

На многих автомобилях в 70-х и 80-х годах прошлого столетия в основном устанавливались карбюраторные двигатели с «траблерной» системой зажигания, но многие передовые компании по производству автомашин уже тогда начали оснащать моторы электронной системой управления двигателем, в которой всеми основными процессами управлял единый блок (ЭБУ). Сейчас практически все современные авто имеют ЭСУД – электронная система применяется не только в бензиновых, но и в дизельных ДВС.

В современной электронике присутствуют различные датчики, контролирующие работу двигателя, посылающие сигналы блоку о состоянии силового агрегата. На основании всех данных от датчиков ЭБУ принимает решение – сколько необходимо подавать топлива в цилиндры на тех или иных нагрузках (оборотах), какой установить угол опережения зажигания.

Датчик фаз газораспределения имеет еще одно название – датчик положения распредвала (ДПРВ), он определяет положение ГРМ относительно коленвала. От его показаний зависит, в какой пропорции будет подаваться топливо в цилиндры в зависимости от количества оборотов и угла опережения зажигания. Если ДПРВ не работает, значит, фазами ГРМ не контролируются, и ЭБУ не «знает», в какой последовательности необходимо подавать топливо в цилиндры. В результате возрастает расход топлива, так как бензин (солярка) одновременно подается во все цилиндры, двигатель работает вразнобой, на некоторых моделях авто ДВС вовсе не запускается.

Регулятор фаз газораспределения

В начале 90-х годов 20-го века стали выпускаться первые двигатели с автоматическим изменением фаз ГРМ, но здесь уже не датчик контролировал положение коленвала, а непосредственно сдвигались сами фазы. Принцип работы такой системы следующий:

  • распределительный вал соединяется с гидравлической муфтой;
  • также с этой муфтой имеет соединение и распредшестерня;
  • на холостых и малых оборотах распредшестерня с распредвалом зафиксированы в стандартном положении, как была установлены по меткам;
  • при увеличении оборотов под воздействием гидравлики муфта поворачивает распредвал относительно звездочки (распредшестерни), и фазы ГРМ смещаются – кулачки распредвала раньше открывают клапана.

Одна из первых подобных разработок (VANOS) была применена на моторах M50 компании BMW, первые двигатели с регулятором фаз газораспределения появились в 1992 году. Следует отметить, что сначала VANOS устанавливался только на впускном распредвалу (у моторов M50 двухвальная система ГРМ), a c 1996-го стала использоваться система Double VANOS, с помощью которой уже регулировалось положение выпускного и впускного р/валов.

Какое преимущество дает регулятор фаз ГРМ? На холостом ходу перекрытие фаз газораспределения практически не требуется, и оно в данном случае даже вредит двигателю, так как при сдвиге распредвалов выхлопные газы могут попасть во впускной коллектор, а часть топлива будет попадать в выхлопную систему, полностью не сгорая. Но когда движок работает на максимальной мощности, фазы должны быть максимально широкими, и чем выше обороты, тем больше необходимо перекрытие клапанов. Муфта изменения фаз ГРМ дает возможность эффективно наполнять цилиндры рабочей смесью, а значит, повысить КПД мотора, увеличить его мощность. В тоже время на холостом ходу р/валы с муфтой находятся в исходном состоянии, и сгорание смеси идет в полном объеме. Получается, что регулятор фаз повышает динамику и мощность ДВС, при этом достаточно экономично расходуется топливо.

Система изменения фаз газораспределения (СИФГ) обеспечивает более низкий расход топлива, снижает уровень CO в выхлопных газах, позволяет более эффективно использовать мощность ДВС. У разных мировых автопроизводителей разработана своя СИФГ, применяется не только изменение положения распредвалов, но и уровень поднятия клапанов в ГБЦ. Например, компания Nissan применяет систему CVTCS, которой управляет клапан регулировки фаз газораспределения (электромагнитный клапан). На холостых оборотах этот клапан открыт, и не создает давление, поэтому распредвалы находятся в исходном состоянии. Открывающийся клапан увеличивает давление в системе, и чем оно выше, тем на больший угол сдвигаются распредвалы.

Следует отметить, что СИФГ в основном используются на двигателях с двумя распределительными валами, где в цилиндрах устанавливается по 4 клапана – по 2 впускных и 2 выпускных.

Приспособления для установки фаз газораспределения

Чтобы двигатель работал без перебоев, важно правильно выставить фазы ГРМ, установить в нужном положении распределительные валы относительно коленвала. На всех движках валы выставляются по меткам, и от точности установки зависит очень многое. Если валы выставляются неправильно, возникают различные проблемы:

  • мотор неустойчиво работает на холостых оборотах;
  • ДВС не развивает мощности;
  • происходят выстрелы в глушитель и хлопки во впускном коллекторе.

Если в метках ошибиться на несколько зубьев, не исключено, что могут согнуться клапана, и движок при этом не запустится.

На некоторых моделях силовых агрегатов разработаны специальные приспособления для установки фаз газораспределения. В частности, для двигателей семейства ЗМЗ-406/ 406/ 409 есть специальный шаблон, с помощью которого измеряются углы положения распредвалов. Шаблоном можно проверить существующие углы, и если они выставлены неправильно, валы следует переустановить. Приспособление для 406-х моторов представляет собой набор, состоящий из трех элементов:

  • двух угломеров (для правого и левого вала, они разные);
  • транспортира.

Когда коленчатый вал выставлен в ВМТ 1-го цилиндра, кулачки распредвалов должны выступать над верхней плоскостью ГБЦ под углом 19-20º с погрешностью ± 2,4°, причем, кулачок впускного валика должен быть чуть выше кулачка выпускного распредвала.

Также есть специальные приспособления для установления распредвалов на моторах BMW моделей M56/ M54/ M52. В комплект установки фаз газораспределения ДВС БВМ входит:

Неисправности системы изменения фаз газораспределения

Изменять фазы газораспределения можно различными способами, и последнее время наиболее распространен поворот р/валов, хотя нередко применяется метод изменения величины подъема клапанов, использование распределительных валов с кулачками измененного профиля. Периодически в газораспределительном механизме возникают различные неисправности, из-за которых мотор начинает работать с перебоями, «тупит», в некоторых случаях и вовсе не запускается. Причины возникновения неполадок могут быть разными:

  • неисправен электромагнитный клапан;
  • засорилась грязью муфта изменения фаз;
  • вытянулась цепь газораспределительного механизма;
  • неисправен натяжитель цепи.

Часто при возникающих неисправностях в этой системе:

  • снижаются холостые обороты, в некоторых случаях ДВС глохнет;
  • значительно увеличивается расход топлива;
  • двигатель не развивает обороты, машина порой не разгоняется даже до 100 км/ч;
  • мотор плохо запускается, его приходится гонять стартером несколько раз;
  • слышен стрекот, идущий из муфты СИФГ.

По всем признакам основная причина проблем с двигателем – выход из строя клапана СИФГ, обычно при этом компьютерная диагностика выявляет ошибку этого устройства. Следует отметить, что лампа диагностики Check Engine загорается при этом не всегда, поэтому трудно понять, что сбои происходят именно в электронике.

Часто проблемы ГРМ возникают из-за засорения гидравлики – плохое масло с частицами абразива забивает каналы в муфте, и механизм заклинивает в одном из положений. Если муфту «клинит» в исходном положении, ДВС спокойно работает на ХХ, но совсем не развивает оборотов. В случае, когда механизм остается в положении максимального перекрытия клапанов, движок может плохо запускаться.

К сожалению, на двигатели российского производства СИФГ не устанавливается, но многие автомобилисты занимаются тюнингом ДВС, стараясь улучшить характеристики силового агрегата. Классический вариант модернизации мотора – это установка «спортивного» распредвала, у которого смещены кулачки, изменен их профиль.

У такого р/вала есть свои преимущества:

  • мотор становится приемистым, четко реагирует на нажатие педали газа;
  • улучшаются динамические характеристики автомобиля, машина буквально рвет из-под себя.

Но в таком тюнинге есть и свои минусы:

  • холостые обороты становится неустойчивыми, приходится их выставлять в пределах 1100-1200 об/мин;
  • увеличивается расход топлива;
  • достаточно сложно отрегулировать клапана, ДВС требует тщательной настройки.

Достаточно часто тюнингу подвергаются вазовские двигатели моделей 21213, 21214, 2106. Проблема движков ВАЗ с цепным приводом – появление «дизельного» шума, и часто он возникает из-за вышедшего из строя натяжителя. Модернизация ДВС ВАЗ заключается в установке автоматического натяжителя вместо штатного заводского.

Нередко на модели двигателей ВАЗ-2101-07 и 21213-21214 устанавливают однорядную цепь: мотор с ней работает тише, к тому же цепочка меньше изнашивается – ее ресурс составляет в среднем 150 тыс. км.