» » Углеводороды топливо его виды и назначение. Ископаемое топливо. Топливо в структуре энергетических ресурсов

Углеводороды топливо его виды и назначение. Ископаемое топливо. Топливо в структуре энергетических ресурсов

Многие полагают, что сырая нефть, выкачиваемая из земли, состоит из смеси различных видов топлив, что все они огнеопасны и, по сути, разницы между ними нет. Отчасти это правда, однако давайте разберемся, чем же с химической точки зрения бензин отличается от дизельного топлива, керосина и т. д.

Сырая нефть, выкачиваемая из-под земли, это вовсе не топливная смесь, но смесь алифатических углеводородов – веществ, состоящих только из атомов углерода и водорода. Последние соединены друг с другом в цепочки различной длины. Так образуются молекулы углеводородов. Этот факт определяет их физические и химические свойства. Например, цепочка с одним атомом углерода (CH 4), является самой легкой и известна как метан – прозрачный газ, легче воздуха. Как только цепи становятся длиннее, молекулы углеводорода становятся тяжелее, их свойства начинают заметно меняться.

Первые четыре углеводорода - CH 4 (метан), C 2 H 6 (этан), C 3 H 8 (пропан) и C 4 H 10 (бутан) – это всё газы. Они кипят (испаряются) при температуре -107, -67, -43 и -18 градусов С. Цепочки начиная от C 18 H 32 – это жидкости, имеющие температуру кипения начиная от комнатной. Так в чем же реальная разница между бензином, керосином и дизельным топливом?

Углеродные цепи в нефтепродуктах

Более длинные углеводородные цепи имеют более высокие температуры кипения. Благодаря этому свойству, углеводороды могут быть отделены друг от друга. Этот процесс называется каталитический крекинг или просто перегонка - это то, что происходит на нефтеперерабатывающем заводе. Здесь нефть нагревают, а затем испарившиеся углеводороды конденсируют, каждый в отдельную емкость.

Вещества, молекулы которых имеют цепи с C 5 , C 6 и C 7 – все очень легкие, легко испаряющиеся, прозрачные жидкости, называемые нафта . Она используется для изготовления различных растворителей.

Углеводороды с цепочками от C 7 H 16 до C 11 H 24 обычно смешиваются и используются для изготовления бензина . Все они испаряются при температурах ниже точки кипения воды (100 o С). Вот почему, если вы пролили бензин, он испаряется очень быстро, буквально на глазах.

Дизельное и печное топливо делают из еще более тяжелых углеводородов - C 16 до C 19 . Температура их кипения от 150 до 380 o С.

Углеродные молекулы с C 20 – это твердые вещества, начиная парафином и кончая битумом, который используется для изготовления асфальта и ремонта автомобильных дорог.


Все эти вещества получают из сырой нефти. Единственная разница заключается в длине углеродной цепи. Покупая дизельное топливо , вы получаете горючее, состоящее из смеси определенных углеводородов. Кроме того, в этой смеси присутствуют различные химические добавки, меняющие некоторые свойства. Например, температуру загустевания или температуру вспышки.

Таким образом, одна и та же смесь углеводородов может стать как летним, так и зимним дизтопливом. Всё зависит от добавок!

Как это работает?

В реальной жизни мало иметь топливо. Для того, чтобы произвести полезную работу: обогреть дом, переместить вас в автомобиле на какое-то расстояние, перевести груз, требуется сжечь топливо в двигателе внутреннего сгорания. Не важно, что это будет за двигатель – дизельный или бензиновый, дело в самом топливе. А именно, в его сжигании.

Сжигание – это процесс распада с выделением энергии. А что в топливе может распадаться? Химические связи. Получается, что чем больше связей и чем длиннее цепи – тем лучше. Так оно и есть! Именно этот факт объясняет более высокую эффективность дизельного топлива по сравнению с бензином.

Следует также помнить, что в момент сжигания углерод окисляется и образуется СО 2 – двуокись углерода. Это вредное вещество, которое вызывает на Земле тот самый парниковый эффект. В дизельном топливе, атомов углерода больше, еще больше их в пластике. Вот почему не стоит сжигать эти вещества без особой необходимости.

Многие полагают, что сырая нефть, выкачиваемая из земли, состоит из смеси различных видов топлив, что все они огнеопасны и, по сути, разницы между ними нет. Отчасти это правда, однако давайте разберемся, чем же с химической точки зрения бензин отличается от дизельного топлива, керосина и т. д.

Сырая нефть, выкачиваемая из-под земли, это вовсе не топливная смесь, но смесь алифатических углеводородов – веществ, состоящих только из атомов углерода и водорода. Последние соединены друг с другом в цепочки различной длины. Так образуются молекулы углеводородов. Этот факт определяет их физические и химические свойства. Например, цепочка с одним атомом углерода (CH 4), является самой легкой и известна как метан – прозрачный газ, легче воздуха. Как только цепи становятся длиннее, молекулы углеводорода становятся тяжелее, их свойства начинают заметно меняться.

Первые четыре углеводорода - CH 4 (метан), C 2 H 6 (этан), C 3 H 8 (пропан) и C 4 H 10 (бутан) – это всё газы. Они кипят (испаряются) при температуре -107, -67, -43 и -18 градусов С. Цепочки начиная от C 18 H 32 – это жидкости, имеющие температуру кипения начиная от комнатной. Так в чем же реальная разница между бензином, керосином и дизельным топливом?

Углеродные цепи в нефтепродуктах

Более длинные углеводородные цепи имеют более высокие температуры кипения. Благодаря этому свойству, углеводороды могут быть отделены друг от друга. Этот процесс называется каталитический крекинг или просто перегонка - это то, что происходит на нефтеперерабатывающем заводе. Здесь нефть нагревают, а затем испарившиеся углеводороды конденсируют, каждый в отдельную емкость.

Вещества, молекулы которых имеют цепи с C 5 , C 6 и C 7 – все очень легкие, легко испаряющиеся, прозрачные жидкости, называемые нафта . Она используется для изготовления различных растворителей.

Углеводороды с цепочками от C 7 H 16 до C 11 H 24 обычно смешиваются и используются для изготовления бензина . Все они испаряются при температурах ниже точки кипения воды (100 o С). Вот почему, если вы пролили бензин, он испаряется очень быстро, буквально на глазах.

Дизельное и печное топливо делают из еще более тяжелых углеводородов - C 16 до C 19 . Температура их кипения от 150 до 380 o С.

Углеродные молекулы с C 20 – это твердые вещества, начиная парафином и кончая битумом, который используется для изготовления асфальта и ремонта автомобильных дорог.


Все эти вещества получают из сырой нефти. Единственная разница заключается в длине углеродной цепи. Покупая дизельное топливо , вы получаете горючее, состоящее из смеси определенных углеводородов. Кроме того, в этой смеси присутствуют различные химические добавки, меняющие некоторые свойства. Например, температуру загустевания или температуру вспышки.

Таким образом, одна и та же смесь углеводородов может стать как летним, так и зимним дизтопливом. Всё зависит от добавок!

Как это работает?

В реальной жизни мало иметь топливо. Для того, чтобы произвести полезную работу: обогреть дом, переместить вас в автомобиле на какое-то расстояние, перевести груз, требуется сжечь топливо в двигателе внутреннего сгорания. Не важно, что это будет за двигатель – дизельный или бензиновый, дело в самом топливе. А именно, в его сжигании.

Сжигание – это процесс распада с выделением энергии. А что в топливе может распадаться? Химические связи. Получается, что чем больше связей и чем длиннее цепи – тем лучше. Так оно и есть! Именно этот факт объясняет более высокую эффективность дизельного топлива по сравнению с бензином.

Следует также помнить, что в момент сжигания углерод окисляется и образуется СО 2 – двуокись углерода. Это вредное вещество, которое вызывает на Земле тот самый парниковый эффект. В дизельном топливе, атомов углерода больше, еще больше их в пластике. Вот почему не стоит сжигать эти вещества без особой необходимости.

Углеводороды в топливе

В зависимости от происхождения нефти в товарных реак­тивных и дизельных топливах содержатся следующие основные углеводороды (в вес. %):

Во фракциях нефтей Азербайджана преобладают углеводороды циклановой структуры, в керосиновых фракциях нефтей При­волжских месторождений - алкановой структуры. Так, во фрак­ции 150-200°С ромашкинской нефти обнаружено следующее содержание углеводородов (в вес. %):

Найдено, что в керосиновой фракции 180-320°С бавлинской нефти карбона содержатся (в вес. %):

Остальное - органические неуглеводородные примеси (серни­стые соединения, смолы и др.). Количество неохарактеризованных углеводородов составляет 1,5%.

В соответствии с требованиями к низкотемпературной харак­теристике топлив содержание алканов нормального строения огра­ничивается. Максимально допустимое их содержание должно отвечать количеству, растворимому в топливе данного состава при минимальной предусмотренной для него температуре кри­сталлизации. В реактивных топливах, для которых температура кристаллизации предусматривается ниже -60°С, содержание алканов нормального строения не превышает 5-7%. В дизель­ных топливах, для которых температура кристаллизации в зави­симости от назначения должна быть выше минус 10 - минус 60°С, может содержаться 10-20% алканов нормального строе­ния. Названные пределы приблизительны, поскольку они зависят и от молекулярного веса таких алканов. Чем длиннее углеродная цепь, тем выше температура кристаллизации нормальных алканов. В цепи нормальных алканов, содержащихся в керосинах, 10- 18 углеродных атомов.

В узких керосино-газойлевых фракциях прямой перегонки нефтей содержание нормальных алканов изменяется от 9 до 32%. Например, во фракции 200-350°С ромашкинской нефти их содержится 16%; во фракции 200-400 °С туймазинской нефти- 14%; в газойле каталитического крекинга (230-405°С) - 14%.

Температура кристаллизации алкаиов изомерного строения значительно ниже, чем у их аналогов - нормальных алканов.

Многие углеводороды имеют огромное число изомеров. Так, додекан (C 12 H 26 ) имеет 355 .изомеров, кипящих в пределах 176- 216°С, а гексадекан (C 16 H 34 ) - 10 359 изомеров, кипящих в пре­делах 268-285,5°С. У цикланов возможное число изомеров несравненно больше (гомологи циклопентана, циклогексана, цистрансизомерия). Лишь этилциклогексан имеет 23 возможных изомера. У ароматических углеводородов число изомеров не ме­нее значительно. Таким образом, углеводородные топлива сле­дует представлять себе как сложную смесь углеводородов раз­личного строения.

В действительности состав углеводородов нефтепродуктов оказался намного проще, чем можно было бы ожидать при на­личии в смеси всех изомеров того или иного углеводорода. Одна­ко несмотря на это топливная смесь углеводородов все же край­не сложна. Для разделения и индивидуализации углеводородов топлив требуется затрата больших усилий. В результате дли­тельной и кропотливой работы Института нефти США из фрак­ций мидконтинентской нефти выделено всего лишь 72 углеводо­рода, в том числе 46 углеводородов, кипящих ниже 150 С С, 13 углеводородов, кипящих в пределах 150-200 °С, и 13 углеводо­родов, кипящих выше 200°С. Углеводородный состав керосино-газойлевых фракций изучен недостаточно.

Накопленные сведения позволяют считать, что алканы изо­мерного строения, содержащиеся в среднедистиллятных нефтя­ных топливах, характеризуются малоразветвленной структурой. Количество боковых цепей невелико, а длина их ограничивается 1-5 углеродными атомами. В боковых цепях изоалканов содер­жатся преимущественно метильные или этильные группы и зна­чительно реже встречаются пропильные группы.

Среди цикланов среднедистиллятных топлив обнаружены од­но, двух-, трех- и четырехзамещенные циклогексаны и циклопентаны. Боковые цепи состоят преимущественно из 1-3 угле­родных атомов. Из бициклических конденсированных цикланов найдены декалин и его гомологи. Так, в керосине сураханской легкой масляной нефти обнаружены тетраметилзамещенные цик­логексана, декалин, метил- и диметилдекалины. В керосинах туй- мазинской девонской нефти найдены тетраметилциклогексан, моноалкнлциклогексаны изомерного строения, м- и п-диалкил- циклогексаны, 1,3,3-триалкилциклогексаны, тетраалкилциклогексаны, декалин, диметилдекалины, триметилдекалины, пергидро- аценафтен. В керосинах ромашкинской девонской нефти установлено присутствие цикланов, близких по строению к цикланам керосина туймазинской нефти. В прямогонных керосино-газойлевых фракциях содержание цикланов во фракции 200-350 °С ромашкинской нефти составляет 19%, во фракции 200-400 °С туймазинской нефти 24%. Что же касается газойля каталитического крекинга, полученного при переработке тяжелого сырья (фракций 320-450 °С), то в нем содержание цикланов ниже 5-10%, хотя в отдельных фракциях оно достигает 15%.

При исследовании ароматических углеводородов керосино-газойлевых фракций установлена интересная зависимость: по сво­ей структуре эти ароматические углеводороды представляли как бы дегидрированные аналоги цикланов, обнаруживаемых в той же фракции. Ассортимент ароматических углеводородов ограни­чивался одно-, двух-, трех- и четырехзамещенными бензолами с числом углеродных атомов в боковой цепи 1-5 (преимуществен­но метил-, этил-, реже пропилгруппы).

Из моноциклических ароматических углеводородов в кероси­нах сураханской легкой масляной нефти найдены тетраметил- бензолы (три изомера); в керосинах туймазинской девонской нефти - тетраметилбензолы, алкилбензолы с алкильными груп­пами преимущественно изомерного строения в n -, реже в о - и м -положении, трехзамещенные типа 1,2,3- и 1,2,4-бензолы, а также тетраалкилзамещенные. В керосине ромашкинской девон­ской нефти обнаружены тетраметилбензолы, в том числе 1,2,4,5- тетраметилбензол (дурол), моноалкилбензолы (главным образом, с боковыми цепями изомерного строения), м- и n -диалкилбензо- лы и триалкилбензолы. В керосине туймазинской девонской неф­ти содержатся моно-, ди- (м- и п-) и тетраметилбензол, и триал­килбензолы. Такого же типа моноциклические ароматические углеводороды содержатся в керосине ромашкинской девонской нефти. Во фракции 200-300 °С миннибаевской (девонской) нефти по спектрам поглощения в ультрафиолетовой области установлено присутствие моноциклических ароматических угле­водородов, м - и n -диалкилбензолов, всех изомеров трехзамещен- ных (1,2,3-, 1,3,5- и 1,2,4-) бензолов. Среди тетраалкилбензолов, преобладали изомеры 1,2,3,4- и 1,2,3,5.

Многие исследования керосиновых фракций, полученных пря­мой перегонкой различных нефтей, подтверждают, что углево­дородный состав этих фракций близок к вышеописанному.

В прямогонных керосино-газойлевых фракциях с повышением температуры кипения общее содержание ароматических углево­дородов возрастает с 18-25 до 40-47%, а в газойле каталити­ческого крекинга снижается с 80-86 до 15-30%. С повышением температуры кипения фракций содержание моноциклических соединений снижается, а бициклических возрастает. Так, в от­гоне 270-300°С керосиновой фракции 200-300°С бавлинской нефти - одной из наиболее перспективных нефтей Татарской АССР - моноциклических ароматических углеводородов содер­жится 6%, а бициклических 72%, в то время как в керосиновой фракции моноциклических ароматических углеводородов содер­жится 32%, а бициклических 37%.

В керосино-газойлевой фракции прямой перегонки, получен­ной из ромашкинской и туймазинской нефтей, общее содержание ароматических углеводородов превышает 30%, а в газойле ка­талитического крекинга достигает 50-70%. Между тем содер­жание ароматических углеводородов в газойле каталитического крекинга может быть намного меньше. Например, в газойле ка­талитического крекинга тюленевской нефти (фракция 200- 350°С) ароматических углеводородов содержится 11%; очевид­но, содержание ароматических углеводородов зависит не только от сырья, но и от режима процесса его переработки.

В большинстве керосино-газойлевых фракций нефтей обнару­жен нафталин и его гомологи: метил-, диметил-, этил-, триметил-, тетраметилнафталины. Содержание бициклических ароматичес­ких углеводородов достигает 11-20% от общего содержания ароматических углеводородов (или 1-5% на углеводородную фракцию). Углеводороды ряда нафталина выделены из кероси­нов нефтей Азербайджана, Северного Кавказа, Дальнего Восто­ка. Они найдены во фракциях нефтей Грузии, Туркмении, круп­нейших месторождений Татарин и Башкирии. Исключение составляют керосины эмбенских и майкопских нефтей, в которых нафталин и его гомологи практически отсутствуют. В керо­сино-газойлевых фракциях наряду с бициклическими ароматиче­скими углеводородами найдены углеводороды смешанного строе­ния, например тетралин, а также трициклические углеводороды типа аценафтена или бензоиндана.

Ненасыщенные углеводороды керосино-газойлевых фракций исследованы мало. Во фракциях прямой перегонки их количест­во невелико. Например, во фракции 200-350°С ромашкинской нефти ненасыщенных углеводородов 2-3%, во фракции 200- 400 °С туймазинской нефти - 5,3%. В газойле каталитического крекинга ненасыщенных углеводородов содержится в среднем 10-12%. С повышением температуры кипения фракций этого же газойля содержание ненасыщенных углеводородов увеличивается с 1,5 до 25%. С возрастанием требований к качеству топлив даже незначительная примесь ненасыщенных углеводородов будет ока­зывать отрицательное влияние на стабильность и другие харак­теристики топлива. После гидроочистки в прямогонных дистилля­тах остаются небольшие количества ненасыщенных углеводоро­дов. Так, дизельные фракции, выкипающие в пределах 200- 360 °С, поступают на гидроочистку с йодным числом 5-13. После гидроочистки йодное число равно 2. Если принять, что молеку­лярный вес такого топлива равен 200 и считать, что ненасыщен­ные соединения имеют лишь одну двойную связь, то их количество в этом случае достигает 1,5 вес. %, т. е. оно может оказать суще­ственное влияние на стабильность топлива, особенно в термически напряженных условиях эксплуатации, а также при длительном хранении. Весьма важно знать степень отрицательного влияния ненасыщенных углеводородов в зависимости от их строения. Име­ются основания считать, что алкены наиболее стабильны, циклены занимают промежуточное положение, а наименее стабильны, по-видимому, диеноароматические и олефиноароматические угле­водороды.

Газойлевая фракция (кипящая выше 180 °С), полученная на основе калифорнийских нефтей, содержала 30% ненасыщенных углеводородов в продукте термического крекинга, 14% в продук­тах каталитического крекинга и 2% в продуктах прямой перегон­ки.

Во фракции каталитического крекинга (171-221 °С) обнаруже­но около 3% инден-стиролов, причем содержание углеводородов такого строения возрастало с температурой кипения фракций. Присутствие диено- и олефииоароматических углеводородов уда­лось установить косвенным путем-при изучении строения про­дуктов их окисления, извлеченных из крекинг-керосина и реактивных топлив прямой перегонки. Соединения, состоя­щие из бензольного и нафтенового колец с боковыми цепями, содержащими одну и более дзойных связей, присутствуют в топливах прямой перегонки, а также и в крекинг-дистиллятах. Различие заключается лишь в их количестве. При весьма при­близительной оценке в топливах прямой перегонки их содер­жится менее 1%, в крекинг-керосине 3%. Такое количество (1-3%) вполне достаточно для того, чтобы отрицательно по­влиять на стабильность топлив. Пока нет веских оснований предполагать наличие в керосино-газойлевых фракциях прямой перегонки циклодиеновых или алканодиеновых углеводоро­дов, которые также относятся к наименее стабильным со­единениям.

Проблема изучения химической активности, состава, строе­ния ненасыщенных углеводородов топлив, даже в случае их ма­лой концентрации в смеси, весьма актуальна. К сожалению, ей пока не уделяется достаточного внимания.

Из олефииоароматических углеводородов наиболее изучены стирол и его гомологи. В табл. 5 приведена характеристика не­которых углеводородов ряда стирола.


Значительные количества олефино- и диеноароматических углеводородов обнаружены в продуктах пиролиза и высокотем­пературного термического крекинга керосина. Так, при крекинге фракции 150-210°С, содержавшей 10% цикланов, 20% арома­тических углеводородов (температура 680-700°С, избыточное давление 2,8-3,5 ат), во фракции 150-190°С, выход которой составлял 5-8% всей суммы продуктов крекинга, содержание олефииоароматических углеводородов достигало 30-40%. Сре­ди них обнаружены метил-, этил-, диметилстиролы, пропенил-бензолы, инден и метилинден. Углеводороды такого же строения обнаружены во фракции 150-200°С-продукте пиро­лиза керосина. Присутствие ненасыщенных замещенных аро­матических углеводородов было установлено также в керосино-газойлевых фракциях прямой перегонки. Среди ароматических углеводородов этих фракций в составе моноциклических найдено 6,4% ненасыщенных соединений; в составе бициклических 21,1% и в составе трициклических углеводородов 1,6%.

Ненасыщенные замещенные ароматические углеводороды вслед­ствие своей малой стабильности оказывают отрицательное влия­ние на многие эксплуатационные свойства топлив.

Ученые ищут способы удалять избыточный углекислый газ (СО2) из атмосферы, поэтому множество экспериментов направлено на использование этого газа в создании топлива. И водород, и метанол использовали в экспериментах, но процессы были многоступенчатыми и требовали применения разнообразных методик. Теперь исследователи Техасского Университета (Арлингтон, ЮТА) продемонстрировали прямое, простое и недорогое преобразование СО2 и воды в жидкое топливо с помощью высокого давления, интенсивного излучения и сконцентрированного подогрева.

По словам исследователей из Техаса, это прорыв – получение технологии стабильного топлива с применением углекислого газа из атмосферы и преимуществом в виде производства кислорода как побочного продукта, что окажет еще более положительное воздействие на окружающую среду.

«Мы первые, кто использовал и свет, и тепло, чтобы синтезировать жидкие углеводороды в одноступенчатом процессе из СО2 и воды, - сказал Брайан Деннис, профессор UTA и научный coруководитель проекта. - Сосредоточенный свет стимулирует фотохимическую реакцию, которая генерирует высокоэнергетические промежуточные звенья и тепло, чтобы стимулировать термохимические реакции углеродного цепного формирования, таким образом производя углеводороды в одноступенчатом процессе».

Для инициации процесса фото- и термохимической реакции используется фотокатализатор из диоксида титана, который очень эффективен в UV-спектре, но неэффективен в видимом. Для повышения эффективности исследователи собираются создать фотохимический катализатор, лучше соответствующий солнечному спектру. Согласно исследованиям, команда предполагает, что кобальт, рутений или даже железо можно рассмотреть как хороших кандидатов на новый катализатор.

«У нашего процесса также есть важное преимущество перед альтернативными технологиями для транспортных средств, поскольку многие продукты углеводорода у нашей реакции те же, что используются в автомобилях, грузовиках и самолетах, таким образом, не будет необходимости менять существующую систему распределения топлива», - сказал Фредерик Макдоннелл, временный декан факультета химии и биохимии UTA и научный coруководитель проекта.

В будущем исследователи предполагают, что параболические зеркала могли также использоваться, чтобы сконцентрировать солнечный свет на катализаторе в реакторе, таким образом обеспечивая и необходимое нагревание, и фотоинициацию реакции без других источников внешнего питания. Команда также полагает, что любой избыток тепла, создаваемый в процессе, может быть также использован в других аспекты солнечного топливного средства, например, отделении и очистке воды.

Углеводородное топливо его виды и значение

Углеводородные топлива - представляют собой смесь углеводородов.

Схема установки для определения фракционного состава топлива. Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количества индивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90 % объема топлива и температуру конца кипения.

Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее. Растворимость воды в топливе невелика и зависит при прочих равных условиях от температуры и химического состава топлива. Наиболее гигроскопичными являются ароматические углеводороды и особенно бензол. Поэтому топлива, богатые ароматическими углеводородами, обладают повышенной гигроскопичностью.

Углеводородное топливо, поступающее при 260 С, подвергается крекингу при 500 С в псевдо ожженном слое; применяется технологическая схема реактор - регенератор.

Углеводородные топлива характеризуются высокой теплотой сгорания. Продуктами их полного сгорания являются, главным образом, двуокись углерода и вода. Лишь водород, бериллий и бор имеют большие теплоты сгорания, чем углеводороды. Однако При их использовании в качестве топлив возникают весьма сложные проблемы, которые здесь не рассматриваются. По эксплуатационным свойствам углеводороды как топлива отличаются значительными преимуществами.

Углеводородные топлива отличаются высокой скоростью и пол-нотой сгорания. Благодаря этому двигатель получает для своей работы тепловой заряд большой плотности в весьма короткий отрезок времени. При хорошо организованном процессе полнота сгорания углеводородных топлив достигает 98 % и более.

Углеводородные топлива мало различаются по количеству воздуха, теоретически необходимого для полного его сгорания - в пределах от 13 9 до 15 0 кг / кг топлива. Причем чем выше массовая теплота сгорания топлива (выше соотношение водорода к углероду), тем больше воздуха необходимо для его сгорания.

Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее. Растворимость воды в топливе невелика и зависит при прочих равных условиях от температуры и химического состава топлива. Наиболее гигроскопичными являются ароматические углеводороды, и особенно, бензол. Поэтому топлива, богатые ароматическими углеводородами, обладают повышенной гигроскопичностью.

Углеводородное топливо, которое находится в газообразном состоянии при температуре от 15 С и атмосферном давлении.

Углеводородные топлива без добавок неуглеводородных соединений обладают высокой физической стабильностью.

Гигроскопичность углеводородов. Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее.

Легкое углеводородное топливо, перевозимое в жидком виде, а используемое в газообразном, называют сжиженным газом. Он получает широкое применение в качестве топлива в городах и сельских районах.

Углеводородные топлива типа керосина и широкой бензино-лигроино-керосиновой фракции имеют близкие пределы устойчивого горения в двигателе.

Для углеводородных топлив отношение СР / НР определяется с учетом относительного содержания углерода и водорода в рабочей массе топлива.

Для углеводородных топлив это сближение в первом приближении (за исключением области, близкой к области максимальной концентрации инертного газа) происходит прямо пропорционально изменению концентрации инертного газа и в основном вследствие смещения верхнего предела.

Дымность продуктов сгорания Д топлива ТС-1 на выходе из камеры сгорания ГТД в зависимости от давления в камере Я (по данным К. Н. Ерастова. Расход углеводородов и топлива GT, сжигаемых без дымления, в зависимости от давления Р [ 140 ]. Склонность углеводородных топлив к дымлению характеризуется высотой некоптящего пламени, люминометрическим числом и определяется непосредственно при квалификационных испытаниях топлив на модельной камере сгорания.

Сравнение эффективности различных способов получения водорода. Для углеводородных топлив единственным ограничением является минимум производительности, при которой еще оправдывается сравнительная сложность конструкции установок. При этом первостепенный интерес представляют установки на жидких нефтепродуктах как наиболее универсальные.

Среди углеводородных топлив худшую фильтруемость при одинаковых условиях имеют дизельные топлива, наилучшую - бензины. На установке, моделирующей топливную систему летательных аппаратов, была исследована фильтруемость различных топлив.

Теплопроводность углеводородных топлив зависит от химического состава и температуры.

Теплопроводность углеводородных топлив зависит от их химического состава и при 0 С и атмосферном давлении лежит в пределах 0 115 - 0 125 Вт / (м - К), С повышением температуры теплопроводность топлив уменьшается; давление влияет незначительно. Наибольшую теплоемкость имеют алканы нормального строения. По мере увеличения разветвленности и роста отношения С: Н теплоемкость углеводородов падает. Высокую теплоемкость имеют спирты. При увеличении давления теплоемкость немного уменьшается.

Для углеводородных топлив (без присадки антидетонатора) замечено, что скорость сгорания изменяется пропорционально октановому числу.

Теплоемкость углеводородных топлив при 20 С и атмосферном давлении составляет 1 6 - 2 0 кДж / кг К.

Теплопроводность углеводородных топлив при 0 С и атмосферном давлении изменяется в пределах 0 115 - 0 125 Вт / м К.

Теплотворность углеводородных топлив колеблется в довольно узких пределах.

Фракции, получаемые при перегонке сырой нефти.

Источниками углеводородного топлива являются сырая нефть и природный газ. Месторождения нефти и газа обычно находятся рядом и имеются во многих странах мира.

Эра дешевого углеводородного топлива, обеспечившего небывалые темпы экономического роста промышленно развитых государств, ушла в прошлое безвозвратно.

В углеводородных топливах, при их хранении, происходят химические изменения в основном за счет окисления и дальнейших превращений наиболее нестойких углеводородов. При этом образуются продукты окисления смолистого характера и топлива становятся непригодными к применению на двигателях.

Высшая теплота сгорания некоторых элементов. Теплота сгорания углеводородных топлив зависит от химического состава и строения индивидуальных углеводородов, входящих в состав топлива, и для углеводородов различных групп находится в пределах 9500 - 10 500 ккал / кг. В табл. 4 приведены значения теплоты сгорания на единицу массы и объема для элементов, обладающих наибольшей теплотой сгорания по сравнению с остальными элементами периодической системы.

Теплота сгорания углеводородных топлив может быть рассчитана по различным эмпирическим формулам.

Зависимость пределов устойчивости горения от химического состава углеводородов. При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть твердых выделений отлагается на поверхностях камеры сгорания в виде нагара. Образование нагара в двигателе зависит от следующих свойств топлива: фракционного и химического состава, плотности, содержания смолистых веществ, серы и других примесей. Кроме того, нагарообразование зависит от конструкции камеры сгорания и от полноты процесса сгорания.

Один пожарник спасает другого, попавшего в ядовитый дым, при пожаре в закрытом складе. При сжигании углеводородного топлива при низких температурах могут образовываться легкие углеводороды, альдегиды (такие как формальдегид) и органические кислоты. Значительные количества окиси азота образуются при высоких температурах - как следствие окисления азота, содержащегося в атмосфере, и при низких температурах горения топлива, в котором содержится много азота. Если топливо содержит хлор, образуется хлористый водород. Полимерные пластические материалы представляют особую опасность.

Молекулярную массу углеводородных топлив определяют главным образом криоскопическим методом и в редких случаях используют метод измерения плотности паров.

Сернистые соединения углеводородных топлив, в том числе и дизельного, в процессе конверсии паром переходят в основном в сероводород. Термодинамические расчеты, выполненные для некоторых реакций сероводорода с твердыми реагентами с целью определения степени превращения сероводорода в условиях больших концентраций водяного пара, показали, что для улавливания сероводорода из влажного газа наиболее благоприятным реагентом является окись цинка. Степень поглощения сероводорода окисью цинка даже в условиях высоких концентраций водяного пара (около 50 %) при температуре 800 - 900 С остается значительной (52 %), а окись кальция в этих же условиях не хемосор-бирует сероводорода.

Катализ окисления

Катализ окисления углеводородных топлив ионами металлов заключается в генерировании радикалов, обусловливающих развитие окислительных цепей и требующих дополнительного расхода антиокислителя на вывод из сферы реакции вновь образующихся пероксидных радикалов.

Для получения углеводородных топлив с повышенной термической стабильностью предложены способы , которые применяют обработку нефтяных дистиллятов серной кислотой и молекулярными ситами. Молекулярные сита избирательно выделяют полярные соединения, ухудшающие его термостабильность.

При контакте углеводородных топлив с металлами, особенно при повьппенной температуре, на поверхности последних образуются отложения.

Условия применения углеводородных топлив в ракетных двигателях и в сверхзвуковых самолетах существенно различаются. Из бака под наддувом газифицированного азота горючее поступает в центробежный насос, откуда через главный клапан - в зарубашечное пространство двигателя. Часть топлива после главного клапана горючего отбирается в систему автоматического управления рабочим процессом, где имеются узлы с зазорами трущихся пар 17 - 20 мк.

Схема термовоздушного газификатора бензина. Паровая конверсия углеводородного топлива в конструктивном оформлении более сложная. Это обусловлено необходимостью иметь дополнительную емкость для воды, систему ее подачи и дозирования.

Энергетические характеристики топлив для ВРД. Энергетические характеристики углеводородных топлив для ВРД могут быть повышены при помощи их радиоактивного облучения. При радиоактивном облучении молекулярный вес топлива увеличивается.

Энергетические характеристики углеводородных топлив для ВРД ограничены тем, что в их составе наряду с водородом, обладающим самой высокой теплотой сгорания 28 700 ккал / кг, содержится углерод, теплота сгорания которого невысока - 7800 ккал / кг. Путем замены углерода на более высококалорийные элементы, например бериллий (14 970 ккал / кг) и бор (14 170 ккал / кг), открываются широкие возможности получения перспективных высокоэнергетических топлив для ВРД.

Кислотное число углеводородных топлив и масел очень мало. Кислоты, а особенно оксикислоты, накапливающиеся в топливах и маслах при эксплуатации, являются крайне нежелательной примесью.

При выборе углеводородного топлива необходимо рассмотреть некоторые свойства углеводородов. К ним относятся количество теплоты, выделяемое на каждый грамм сожженного топлива; преимущество высокой энтальпии сгорания может быть утрачено, если из-за большой молекулярной массы требуется мною топлива.

Теплотворная способность углеводородных топлив зависит от элементарного состава, который в свою очередь связан с групповым составом.

При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы, по-видимому, в результате пиролиза топлива до кокса уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть коксовых выделений отлагается на поверхностях камеры сгорания, лопатках турбины и прочих частях в виде нагара. Образование нагара в первую очередь зависит от условий сгорания топлива и его химического состава, в частности, от содержания углерода и водорода.

теплопроводность углеводородный топливо водород

Виды углеводородного топлива

Ароматические углеводороды - органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. -- бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5--C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.

Осн. источником получения А. у. служат продукты коксования кам. угля. Из 1 т кам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда (см. Ароматизация нефтепродуктов). Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу:

По химическим свойствам А. у. резко отличаются от ненасыщенных алициклических соединений; их выделяют в самостоятельный большой класс органических соединений (см. Ароматические соединения). При действии серной кислоты, азотной кислоты, галогенов и других реагентов в А. у. замещаются атомы водорода и образуются ароматические сульфокислоты, нитросоединения, галогенбензолы и т. д. Эти соединения служат промежуточными продуктами в производстве красителей, лекарственных средств и др. Стирол легко образует практически важный полимер -- полистирол. При окислении нафталина образуется фталевая кислота о-С6Н4 (COOH)2, служащая исходным продуктом в производстве многих красителей, глифталевых смол, фенолфталеина.

(алканы) разветвлённого строения, наименьшее октановое число имеют парафиновые углеводороды нормального строения. Топлива нефтяного происхождения, полученные каталитическим риформингом и крекингом, имеют более высокие октановые числа, чем полученные при прямой перегонке.

Для повышения октанового числа топлив используются высокооктановые компоненты и антидетонационные присадки. Многие из них (например, МТБЭ) испаряются легче, чем бензин, что приводит к интересному эффекту у машин с негерметичным бензобаком -- по мере расходования топлива и испарения присадки октановое число бензина, оставшегося в баке, уменьшается на несколько единиц. Это приводит к лёгкому звону при полной мощности мотора (необорудованного датчиком детонации). Подавляющее большинство современных инжекторных двигателей имеют датчики детонации, позволяющие использовать любой бензин с октановым числом 91--98, в двигатели с высокой степенью сжатия можно заливать бензин с октановым числом не ниже 95 или даже 98.

Органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. -- бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5--C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.

Осн. источником получения А. у. служат продукты коксования кам. угля. Из 1 т кам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда (см. Ароматизация нефтепродуктов). Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу

По химическим свойствам А. у. резко отличаются от ненасыщенных алициклических соединений; их выделяют в самостоятельный большой класс органических соединений (см. Ароматические соединения). При действии серной кислоты, азотной кислоты, галогенов и других реагентов в А. у. замещаются атомы водорода и образуются ароматические сульфокислоты, нитросоединения, галогенбензолы и т. д.

Парафиновые углеводороды

Из нефти выделены все алканы нормального строения, вплоть до С33Н68. С5 - C16 - жидкости, С17 и более - твердые вещества.

При осуществлении технологического процесса следует учитывать склонность их при определенных условиях к образованию ассоциатов.

Межмолекулярные взаимодействия высокомолекулярных (ВМ) алканов обусловлены водородными связями типа С-Н …С с энергией 2-4 кДж/моль и дисперсионными силами.

С понижением температуры число молекул углеводородов в парафиновом ассоциате возрастает, т.к. парафиновая цепь из зигзагообразной формы переходит в распрямленную, линейную и в этом состоянии молекулы ВМ парафинов являются склонными к межмолекулярному взаимодействию (ММВ) и образуют надмолекулярные структуры.

Температура начала образования ассоциата повышается с увеличением молекулярной массы углеводородов:

Н-пентан - -60°С;

Н-гексадекан - +80°С.

Число молекул углеводорода в ассоциате тем больше, чем ниже температура:

Н-гексадекан при 20°С - 3 молекулы.

Н-октан при -50°С - 31 молекула.

Это объясняется ослаблением теплового движения молекул углеводородов с понижением температуры и усилением энергии ММВ алканов с ростом длины цепи. Интенсивность ММВ алканов существенно ниже по сравнению с углеводородами других классов, присутствующими в нефтяных системах.

Парафиновые надмолекулярные структуры могут существовать в нефтяной системе только в области низких температур и полностью дезагрегируются при повышении температуры.