» » Ученые впервые измерили силу ван-дер-ваальса между атомами. Силы ван-дер-ваальса Силы взаимодействия ван дер ваальса

Ученые впервые измерили силу ван-дер-ваальса между атомами. Силы ван-дер-ваальса Силы взаимодействия ван дер ваальса

Взаимодействие между молекулами. Комплексные соединения

В предыдущей главе было рассмотрено взаимодействие атомов с образованием молекул, а также представлены структуры и некоторые свойства молекул. Настоящая глава посвящена взаимодействию молекул.

При сближении молекул появляется притяжение, что обусловли­вает возникновение конденсированного состояния вещества. К основ­ным видам взаимодействия молекул следует отнести вандерваальсовы силы, водородные связи и донорно-акцепторное взаимодействие.

Вандерваальсовы силы

В 1873 г. голландский ученый И. Ван-дер-Ваальс предположил, что существуют силы, обусловливающие притяжение между молеку­лами. Эти силы позднее получили название вандерваальсовых сил. Они включают в себя три составляющие: диполь-дипольное, индукционное и дисперсионное взаимодействия.

а – диполь-дипольное взаимодействие; б - индукционное взаимодействие;

в – дисперсионное взаимодействие

Рисунок 6.1 – Вандерваальсовы взаимодействия молекул

6.1.1 Диполь-дипольное взаимо­действие. При сближении по­лярных молекул они ориенти­руются таким образом, чтобы положительная сторона одного диполя была ориентирована к отрицательной стороне другого диполя (рисунок 6.1, а).

Возникающее между диполя­ми взаимодействие называется диполь-дипольным или ориентационным. Энергия диполь-дипольного взаимодействия про­порциональна электрическому моменту диполя в четвертой сте­пени и обратно пропорциональна расстоянию между центрами диполей в шестой степени и абсолют­ной температуре в первой степени.

6.1.2 Индукционное взаимодействие. Диполи могут воздействовать на неполярные молекулы, превращая их в индуцированные (наве­денные) диполи (рисунок 6.1, б). Между постоянными и наведенными ди­полями возникает притяжение, энергия которого пропорциональна электрическому моменту диполя во второй степени и обратно про­порциональна расстоянию между центрами молекул в шестой степе­ни. Энергия индукционного взаимодействия возрастает с увеличени­ем поляризуемости молекул, т.е. способности молекулы к об­разованию диполя под воздействием электрического поля. Величину поляризуемости выражают в единицах объема. Поляризуемость в од­нотипных молекулах растет с увеличением размера молекул (таблища 6.1). Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

6.1.3 Дисперсионное притяжение. В любой молекуле возникают флуктуации электрической плотности, в результате чего появляются мгновенные диполи, которые в свою очередь индуцируют мгновен­ные диполи у соседних молекул (рисунок 6.1, в). Движение мгновенных диполей становится согласованным, их появление и распад происхо­дит синхронно. В результате взаимодействия мгновенных диполей энергия системы понижается. Энергия дисперсионного взаимодей­ствия пропорциональна поляризуемости молекул и обратно пропорциональна расстоянию между центрами частиц. Для неполярных молекул дисперсное взаимодействие является единственной составляющей вандерваальсовых сил (таблица 6.1).


Таблица 6.1 - Вклад отдельных составляющих в энергию молекулярного взаимодействия

Гайтлер и Лондон сводят силы, действующие между двумя атомами, к обменной энергии пар электронов, принадлежащих одновременно обоим атомам. Так как собственные функции, а следовательно, и плотность зарядов электронных "облаков" экспоненциально падают по мере удаления от ядра, то и величина обменного интеграла обоих атомов, по крайней мере для больших расстояний, уменьшается по тому же закону. Поэтому соответствующие силы притяжения и отталкивания имеют сравнительно маленький радиус действия и практически исчезают при расстоянии от ядра, равном нескольким А.

Но, кроме них, между атомами действуют и другие силы, величина которых при увеличении расстояния падает более медленно, благодаря чему на больших расстояниях действие преобладает по сравнению с действием обменных сил. Силы эти - результат электрической поляризации обоих атомов. Такие же силы притяжения входят в уравнение состояния газа Ван-дер-Ваальса. Мы будем называть их поэтому силами Ван-дер-Ваальса.

Квантовомеханическая теория этих сил была создана Лондоном и Эйзеншитцем. Ниже мы изложим коротко основное содержание этой теории.

Оба атома настолько удалены друг от друга, что их собственные функции не перекрываются. Тогда можно пренебречь обменными силами между атомами и

невозмущенную собственную функцию нашей системы записать в виде произведения собственных функций первого атома и второго Невозмущенное собственное значение будет следующим:

где через обозначены энергии состояния состояния В. Предположим теперь, что расстояние между обоими атомами остается неизменным. Построим прямоугольную систему координат ось которой совпадает с прямой, соединяющей оба атома. Пусть и С означают компоненты электрических дипольных моментов атомов. Тогда, как известно, потенциал взаимодействия будет равен:

Эта энергия связи между обоими атомами, которую мы рассматриваем теперь как энергию возмущения, является причиной сил Ван-дер-Ваальса.

Рассмотрим сначала возмущение основного состояния системы под действием энергии связи. В первом приближении возмущение определяется средним значением энергии возмущения вычисляемым с помощью невозмущенной собственной функции

где для сокращения обозначено:

Все эти величины равны нулю, так как невозмущенный атом в основном состоянии не имеет электрического момента. Вследствие этого в первом приближении возмущение собственного значения энергии отсутствует.

Второр приближение для энергии возмущения будет, согласно теории возмущений, выражаться формулой:

причем матричные элементы энергии возмущения определяются следующими выражениями:

Здесь и соответствующие величины являются матричными элементами электрических моментов обоих атомов. Они определяют также и вероятности оптического перехода. Подставляя их в уравнение для и одновременно учитывая значения , получим

Так как и числитель и знаменатель правой части этого выражения положительны энергии атомов в основном состоянии всегда меньше то постоянная К положительна.

Силы связи в молекулах.

Электроны около ядра удерживаются кулоновскими силами притяжения разноименных зарядов. Атом, в целом, электрически нейтрален. Молекулы состоят из атомов. Силы, удерживающие атомы в молекулах тоже являются электрическими, однако возникновение их несколько сложнее. Существует два вида связи атомов в молекулах.

Ионная связь . В некоторых атомах существуют электроны, которые очень слабо связаны с атомом в целом. Эти электроны могут легко потеряться атомом, в результате чего образуются положительные ионы, в других атомах наоборот, электроны сильно связаны с атомом и атом может захватить другой электрон и превратиться в отрицательный ион. Между ионами действуют силы кулоновского притяжения, которые и обеспечивают образование молекул. При сильном сближении ионов образуются силы отталкивания между одноименными зарядами. Молекулы эти называются полярными . Такая связь характерна для полярных молекул.

Ковалентная связь. Рассмотрим два положительных заряда, между которыми находится отрицательный. Заряды по модулю одинаковы. Согласно квантовой механике, в среднем, некоторые электроны при своем движении большую часть времени проводят между ядрами. Эти электроны обобществляются и нельзя сказать, какому атому они принадлежат, поэтому такая связь называется ковалентной . Она характерна для неполярных молекул. Например, .

Впервые в точную науку представление о существенной роли межмолекулярных сил ввел голландский физик Ван дер Вальс. Он считал, что на малых расстояниях между молекулами действуют силы отталкивания, а на больших – силы притяжения, поэтому молекулярные силы, действующие между молекулами, часто называют силами Ван дер Ваальса . Эти силы имеют электромагнитную природу. Любой атом и, тем более молекула, это сложная система из большого числа заряженных частиц.

Первыми мы рассмотрим ориентационные силы. У многих молекул, например, центр положительных и отрицательных зарядов не совпадают. Такую молекулу можно приближенно рассматривать, как диполь . Электрические свойства таких молекул характеризуются дипольным электрическим моментом .

Силы взаимодействия между двумя диполями можно вычислить с помощью закона Кулона. Эти силы зависят от ориентации диполей, поэтому они ориентационными

Индукционные силы (поляризационные). Если одна молекула полярная, а другая не полярная, то полярная молекула поляризует неполярную молекулу, и у нее возникает дипольный момент. Между дипольными моментами возникает сила, которую можно вычислить следующим образом: .

Дисперсионные силы. Силы притяжения существуют и между неполярными молекулами. В среднем, дипольные моменты этих молекул равны нулю, но засчет сложного движения электронов вокруг ядра мгновенное значение дипольного момента отлично от нуля. Мгновенный электрический диполь поляризует соседние молекулы и атомы. Квантовый расчет показывает, что эти силы зависят от расстояния, на малых расстояниях, на больших, по сравнению, с размерами молекулы, расстояниях начинает сказываться конечная скорость распространения взаимодействия и.



Силы отталкивания. Силы отталкивания действуют на очень малых расстояниях между молекулами, они очень быстро нарастают по мере сближения молекул и очень сильно зависят от индивидуального строения молекул. К достаточно хорошим результатам приводит допущение, что силы отталкивания зависят от расстояния.

Силы Ван дер Вальса возникают при полном отсутствии обмена зарядами, поэтому, по сравнению, с силами ионной связи они представляют собой другой крайний случай.

Ковалентная связь возникает в результате частичного обмена зарядами и занимает промежуточное положение между силами Ван дер Ваальса и ионной связью.

Этот тип связи реализуется в чистом виде в кристаллах инертных газов. Известно, что внешняя оболочка инертных газов полностью заполнена и поэтому весьма устойчива. Устойчивость внешней оболочки из 8 электронов проявляется в том, что взаимодействие атомов инертных газов с одноименными или другими атомами чрезвычайно слабо (слабая химическая активность). Однако тот факт, что их все-таки можно превратить в жидкость или твердое тело, доказывает наличие некоторых сил притяжения между атомами; в то же время исключительно низкие температуры, необходимые для их конденсации, показывают, что эти силы чрезвычайно малы. Силы, проявляющиеся у атомов инертных газов при низких температурах, называются силами Ван-дер-Ваальса . Энер

гия притяжения, обусловленная этими силами, мала. Так, например, для криптона энергия связи ∼11.2 кДж/моль (0.116 эВ/атом) или в температурных единицах ∼100 K, что по порядку величины равно температуре

плавления кристаллов инертных газов .

Рассмотрим причину возникновения этих сил. Атомы с заполненными валентными оболочками имеют сферическое распределение электронного заряда и не обладают постоянным электрическим моментом. Происхождение сил Ван-дер-Ваальса обусловлено наличием у таких атомов мгновенных индуцированных дипольных моментов. Если бы среднее положение ядра атома всегда совпадало с центром сферического электронного облака, окружающего ядро, то ван-дер-ваальсово взаимодействие между атомами равнялось бы нулю, а твердое тело не могло бы образоваться. Однако электроны в атоме постоянно движутся относительно ядер, даже находясь в наинизшем энергетическом состоянии. В результате этого движения мгновенное положение центра электронного облака может не совпадать в точности с положением ядра атома. В эти моменты у атома появляется отличный от нуля электрический дипольный момент. Этот мгновенный дипольный момент создает в центре второго атома электрическое поле, которое в свою очередь наводит мгновенный дипольный момент у этого второго атома. Эти два дипольных момента взаимодействуют друг с другом, приводя к ван-дер-ваальсову взаимодействию (диполи ориентируются друг к другу противоположно заряженными концами, в результате чего происходит их электростатическое взаимодействие). Энергия этого взаимодействия выражается формулой

U = −c /r 6, где c - некоторая эмпирическая константа, характеризующая силы взаимного притяжения.

На малых расстояниях между атомами с заполненными электронными оболочками проявляется действие сил отталкивания, обусловленных перекрытием их электронных облаков и электростатическим отталкиванием их ядер. Силы отталкивания на расстояниях в интервале от 0.5 A˚

до 5 A˚ становятся больше сил взаимного притяжения. Потенциал сил отталкивания описывается эмпирическим выражением U = a /r 12, где a - некоторая эмпирическая константа, характеризующая силы отталкивания.8 Энергия отталкивания в этом случае обусловлена главным образом

действием принципа запрета Паули. Действительно, перекрытие запол

8Эти силы отталкивания аналогичны силам отталкивания, обсуждаемым в разделе, посвященном ионной связи. Для описания изменения сил отталкивания с расстоянием широко используется, помимо приведенной формулы, и формула U = λ exp(−r /ρ), где ρ -

размер области взаимодействия, λ - эмпирическая константа, характеризующая силу взаимодействия.

ненных электронных оболочек - это добавление электронов в уже заполненные электронные состояния, что противоречит принципу Паули. Реально перекрытие возможно только при переходе части электронов в более высокие незаполненные состояния. Это означает увеличение энергии системы, а это эквивалентно взаимному отталкиванию.

Таким образом, полную энергию межмолекулярного взаимодействия

в кристаллах инертных газов можно представить в виде

U = a /r 12 − c /r 6. (2.6)

Следует заметить, что действие этих сил проявляется всегда, безотносительно и независимо от других сил. Для ван-дер-ваальсовых сил свойственно отсутствие направленности (в силу сферической симметрии распределения электронной плотности) и насыщаемости. Следствием этого является то, что инертные газы кристаллизуются подобно металлам в структуры с плотнейшей упаковкой (обычно кубическая гранецентрированная решетка с Z к = 12, иногда гексагональная Z к = 12).

Схема эксперимента и пример полученного изображения.

Международный коллектив физиков из США и Китая при помощи сканирующего туннельного микроскопа впервые получил изображения монослоя атомов ксенона, на котором, как предполагают авторы, запечатлены ван дер Ваальсовы связи. Статья опубликована в The Journal of Physical Chemistry Letters .

Силы Ван-дер-Ваальса являются одними из самых слабых межатомных взаимодействий, однако их особенностью является то, что они проявляются между атомами любых элементов, независимо от их химического сродства. Благодаря этому силы Ван-дер-Ваальса существуют даже между атомами инертных газов, приводя к их слабой ассоциации и образованию конденсированных сред (жидких и твердых). Несмотря на то, что роль Ван-дер-Ваальсовых взаимодействий в различных процессах хорошо известна, их не удавалось запечатлеть в явном виде, так как до сих пор не ясно, сопутствует ли этим силам какое-либо явное изменение электронной плотности, которое можно «увидеть» при помощи тех или иных экспериментов.

Авторы новой работы исследовали слои атомов ксенона, адсорбированные на различных подложках - кристаллическом серебре и крупных органических молекулах. Для этого ученые использовали сканирующий туннельный микроскоп с серебряным зондом, на конце которого была адсорбирована одна молекула угарного газа (CO). В качестве сигнала служило изменение энергии колебаний этой молекулы в зависимости от ее окружения: так, когда зонд находился над условной линией, соединявшей два атома ксенона, энергия колебаний CO уменьшалась, а при перемещении его во «впадину» между тремя соседними атомами - увеличивалась.

По результатам проведенных исследований авторы получили карты с изображением адсорбированного ксенона. На них хорошо различимы атомы инертного газа, но, кроме того, видны и линии, соединяющие соседние атомы. Авторы трактуют эти данные как визуализацию Ван-дер-Ваальсовых взаимодействий, так как чувствительность CO-зонда позволяет различить даже такие слабые искажения в окружении.

Изображения, полученные для разупорядоченных атомов ксенона: (a-c) рельеф, полученный в режиме постоянного тока; (d-f) туннельный ток при постоянной высоте, а также его первая и вторая производные по разности потенциалов.

Изображение: Zhumin Han et al./ J. Phys. Chem. Lett.

Новая работа успела вызвать волну обсуждений в среде физиков, близких к этой области. Несмотря на то, что участники соглашаются с высоким экспериментальным уровнем проведенного исследования, не все принимают трактовку, предложенную авторами. В частности, в похожей работе авторы изучали, насколько хорошо можно визуализировать водородные связи при помощи атомно-силовой микроскопии с CO-зондом. В этой статье ученые пришли к выводу, что наблюдающиеся на картах линии между атомами возникают вследствие искажений при измерении силы, таким образом их нельзя считать визулизацией водородных связей.

Ван-дер-Ваальсовы взаимодействия играют роль не только на масштабах, близких к размеру атомов или молекул, как это происходит в случае конденсации инертных газов. Из-за того, что эти силы аддитивны, при взаимодействии двух более крупных тел (коллоидных частиц, например), вклады от всех атомов суммируются, что в итоге приводит к появлению взаимодействия, заметного уже не на нано-, а не микро-уровне. Так, в хорошо известной теории , описывающей устойчивость коллоидных растворов (к ним относятся всевозможные наночастицы, взвеси квантовых точек и тому подобное) именно Ван-дер-Ваальсовы взаимодействия играют одну из ключевых ролей и приводят к слипанию частиц и выпадению осадка, если систему дополнительно не стабилизировать.

Тарас Молотилин